
Release It! Design and Deploy 
Production-Ready Software
2nd edition (2018), Michael T. Nygard

1. + 2. Introduction
High-level learnings:

● You should not assume that you can plan for catching every kind of issue that could 
happen in production. There will always be some unpredictable event. The best you can 
do is to prevent those issues that are predictable, and build the system in a way that it 
can recover from any unanticipated event. (P. 1)

● Typically, systems spend more time in their “operation” phase than in the “development” 
phase of the SDLC. Software delivers its value in production (not during development). 
Decisions that you make regarding design and architecture influence the costs of both 
implementing and operating the software. In long-lasting, non-agile projects, if you tried 
to plan everything ahead of time (with little practical hands-on knowledge that can only 
be gained when operating software for some time), you would make many mistakes, 
because these early decisions are the least informed ones. Consequently, using an agile
development approach is the suggested way to go: build small increments that you also 
operate right from the beginning. Not just to learn which features the customer really 
needs (via feedback), but also to learn about real-world production issues. (P. 4)

3. System stability
● From experience, the authors state that making design decisions that result in a stable 

system usually costs the same as implementing an unstable system. (P. 24)
● Definition of terminology: (P. 24/25)

○ Transaction: abstract unit of work processed by the system. E.g. “customer 
orders several items”. Thus, it can comprise more than just a single DB 
transaction.

○ System: the conglomerate of different hardware and software that is required to 
process transactions.

○ Robustness / stability: ability of a system to keep processing transactions even 
when impulses or stresses are affecting it, or when one or more components fail.

○ Impulse: a fast change in load applied to the system, e.g. a large chunk of 
incoming requests, or a DoS attack.

○ Stress: a persistent (long-lasting) force applied to the system, e.g. a component 
that is nearing its capacity, or external systems that keep responding very slowly.

● A typical category of production incidents are only triggered when operating a system for
long periods of time. Examples are memory leaks, or the system slowing down due to 
having stored excessive amounts of data. Automated tests in CI don’t catch those 

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


issues, and neither do load tests or stress tests. They are not running long enough. 
Running load tests for long periods of time would be too costly anyway. What you can 
do, though, is to set up a separate system (e.g. a smaller replica of the production 
system) that you operate for longer time periods (while not updating the software - so 
not a typical “staging” environment), and to which you apply typical production-loads - 
including the typical variadic day-and-night load patterns. (P. 26)

● The book defines the term “failure mode” (but defines it differently than other sources on 
the internet): in this book, “failure mode” is defined as: the original problem (the “fault”) 
that occurred in some component + how this problem propagates through the remaining 
system + the resulting damage. (P. 26)

● Definition of terms (P. 28/29):
○ Fault: the cause of a problem, e.g. a bug in the code, e.g. when forgetting to 

check a rare condition. The effect might not be immediately visible yet.
○ Error: the visible incorrect effect of the fault. The wrong things the system does 

because of the fault.
○ Failure: the final bad state of your system, e.g. being unresponsive.
○ Generally, faults become errors, errors provoke failures.

● The high-level mission of this book is to teach us to build safe failure modes, where the 
damage of a fault is contained to a small part of the system (i.e., we avoid that the 
problem spreads throughout the entire system). To achieve this, you need to be aware 
of the different faults that can occur, how they would spread through the system, and 
how you can steer / control this spread. (P. 27)

○ Examples are:
■ Using timeouts instead of calling methods that block for indefinite time 

periods. A blocking method can cause resource starvation in the system 
calling that method.

■ Not using something like Java RMI that hides the "remoteness" of calls 
and can cause the calling system to hang.

● A general insight is that tight coupling between two system-components facilitates the 
spreading (or even multiplication) of an issue between these two components. (P. 29)

● There are two “camps” when it comes to how to handle faults. One camp says that you 
need to try as hard as possible to be “fault-tolerant”, i.e., think of every kind of fault that 
can happen, and develop a lot of defensive code that prevents such faults from 
becoming errors. The other camp states that this approach is futile, because you cannot 
possibly find every kind of fault anyway. They instead say: “let the system crash and 
restart it from a known good state”. (P. 29)

○ For instance, if you started by asking “what are all the things that can go wrong 
when calling external/internal components, using resources, etc.”, you would get 
a very long list of questions. You would have to collect all the resources you are 
using/calling, and for each one you would have to assume various faults, such as
“resource is not available (anymore)”, “resource is slow”, “resource is full”, …

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


4. Stability antipatterns
● From the (uncountably) many concrete faults and causal effects (errors and failures) that

there are, it is possible to bundle/categorize them into a small set of patterns, which are 
presented in this section.

● Term definition: “integration point”: the interaction points between two systems, e.g. a 
TCP socket, a UNIX pipe, a RPC, etc. - all these have the ability to be slow, or hang, or 
deliver incorrect outputs (P. 35). The book goes into a few details about different kinds of
integration points:

○ Sockets:
■ Establishing a socket can fail fast (e.g. when you try to connect to a 

closed port, causing a TCP reset packet, or if the port is open but its TCP 
listening queue is already full), or fail very slowly (e.g. when a port is 
open, and your connection request ends in its (not yet full) listening 
queue). (P. 37)

■ Default values for the connection timeouts vary between OSes, and they 
could be several minutes!

■ After a connection has been successfully established, it could still happen
that data is not no longer quickly received or sent. (P. 37)

■ Be careful with long-lasting connections: they might die because of 
firewalls of the intermediate routers that drop connections from their NAT 
tables in case no packets were sent using those connections for a long 
time. In this case, the firewalls drop the routing table entries due to some 
TTL settings. Such dead connections are not quickly terminated by a TCP
reset, because the firewalls might simply drop the packet. Sending 
regular heartbeats can be a way to circumvent the problem. (P. 41/42)

■ Mitigation: set a connection timeout and a socket timeout (covering the 
case when sending/receiving data is blocked).

■ If you want to debug networking issues, it can make sense to use tools 
such as tcpdump on the server to capture packets in promiscuous mode, 
then transfer the dump to your developer laptop and look at it e.g. with 
Wireshark. (P. 38)

○ HTTP:
■ Many issues can occur, such as (P. 43)

● Server might establish the TCP connection, but not reply with the 
expected HTTP syntax (headers, then body)

● The server might not read the packets you are sending to them, 
causing the socket write ops to block on the client side.

● The server might send back unexpected stuff, e.g. invalid HTTP 
status codes, or stuff with unexpected Content-Type, or it might lie
about the Content-Type.

■ Mitigation: configure timeouts, be prepared for any kind of invalid 
response.

○ Vendor libraries (P. 44)
■ While enterprise-grade server software (whose license you buy) often has

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


high quality and are well-tested, the client SDKs/libraries that the vendor 
offers are often of much lower quality, using all kinds of unsafe coding 
practices.

■ The issues with the libraries might be bugs, or offering too little control 
(such as for the timeouts).

■ The libraries are often closed-source, making it very difficult to debug 
them.

■ Even if you report bugs, it may take a long time until these are fixed.
● The following is a list of stability antipatterns.
● Chain reactions: (P. 47)

○ Scenario: you have a horizontally-scaling system where a load balancer 
distributes load onto many nodes. One node fails due to being overloaded. That 
node’s failure then causes a chain reaction causing other nodes to also fail 
(quickly), basically for the same reason (they have to pick up even more load).

○ If the fault that caused the first node to go down is really a software bug (and not 
simply a huge amount of load), then this bug is present in the code of all nodes, 
causing the same fault in those.

■ Such software bugs might be resource leaks (e.g. memory, sockets, 
connections from a pool, database (row) locks, …) or weird timing bugs 
(e.g. causing deadlocks).

○ Mitigation: autoscaling and health checks. However, the scaler needs to be fast 
enough (faster than the chain reaction itself).

● Cascading failures (P. 49/50):
○ When a failure in one part / layer / component of the system causes a failure in 

another part / layer / component.
○ An amplification factor is if you have many components that depend on one 

particular component: when that one fails, the failure propagates to all those 
components that depend on it.

○ Apart from complete failures, slow responses of the callee can also cause 
failures in the caller, if the caller is programmed to poorly hammer the callee with 
requests.

○ Mitigation: use Circuit Breakers, and Timeouts
● Requests made by users:

○ Term definition “system capacity”: the maximum throughput your system can 
produce that is still satisfying to your users (performance is acceptable). (P. 52)

○ There are many system-internal limits that can be exhausted:
■ Memory: Swap memory is your enemy (it slows down the system). Also, 

be careful with keeping user data in memory for longer periods of time 
(e.g. session data). A surge of requests would kill your node, especially if 
it doesn’t check for memory limits. Consider moving data to a different 
process that is optimized to handle large loads and manage memory 
without errors, e.g. Redis. (P. 54)

● Some tips for caching (P. 67): configure the maximum available 
amount of memory, monitor cache hit rate (send alerts if it is too 
low). When implementing caches in your own code, use weak 

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


references (if offered by the programming language), so that the 
runtime’s garbage collector can delete such cached objects. 
Implement some cache item invalidation strategy, and be careful 
with implementing “cache warming” phases, because they could 
cause the “database dogpile” antipattern (described below).

■ Sockets: Per IP, there are only 64511 ports available for connections. For
a server to be able to accept more, you create virtual IPs. But your 
application needs to listen to all of them. And you need to know how to 
tweak the TCP parameters in the kernel and be aware of the memory 
needed by kernel buffers. There are also issues with closed sockets, 
which cannot be immediately reused for incoming connections, but 
depend on TIME_WAIT.

○ There are different kinds of users:
■ Expensive users (P. 56): those (paying) users that really make intensive 

use of your system. There is no real “defense” against them - you want 
those users, because they generate revenue. However, you can create 
automated tests that contain the most expensive observed request 
patterns, and make sure that the tests also pass even when doubling or 
quadrupling the load.

■ Unwanted or malicious users (P. 59), e.g. scrapers or botnets. The best 
you can do is to detect and block them on the network level.

■ Self-denial attacks (P. 69): when your own employees (e.g. from the 
marketing department) are responsible for traffic surges, e.g. because of 
a promotional offer that has spread to way more users that you originally 
intended. Mitigations:

● Auto-scaling, as long as it reacts fast enough. If you already know/
expect the date and time of a self-inflicted traffic surge, you can 
apply pre-scaling of your resources.

● Improve the communication within your organization.
● Don’t distribute “deep links” where a surge of requests can bring 

down your system. Instead, distribute links to statically-served 
websites/landing-zones (e.g. hosted on a CDN) that redirect users
to the actual sites, and which you can also “close down” once a 
promotion/offer has ended.

● Scaling effects (P. 71): when many services or components depend on one (or few) 
components. Such kinds of systems cannot scale properly. The worst design is if you 
have only one service instance, which is a SPOF (Single Point of Failure). Stress tests 
help to discover them.

● Blocked threads (P. 63):
○ Often, some kind of blocked threads (that wait for an impossible outcome) are 

the cause of a system failure (the system still runs, but is unresponsive). 
○ Mitigations:

■ Specify timeouts wherever possible.
■ Expose (and monitor) metrics (e.g. counters of resources (e.g. open 

connections, or # of running worker-processes) or status codes of 

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


requests).
■ Do external monitoring where a mock client (situated in a different data 

center) runs dummy queries against your system - it generates alerts sent
to you once these queries fail.

■ When developing, carefully craft your code, and use well-known 
concurrency patterns with well-tested libraries. Beware of hidden 
complexity and waiting times that are not immediately obvious from 
looking at the API of things you are calling. E.g. when using a vendor’s 
SDK that internally handles connection pools poorly.

● Unbalanced capacities (P. 75-78)
○ When the scaling-capabilities of the different services/components of your 

system do not match. The consequence is that one component can overload 
another (less scalable) component. Unbalanced capacities is a special form of 
the Scaling Effects antipattern.

○ One issue often found in practice is the reliance on external, rate-limited APIs, 
which in turn limit the scalability of your service. Mitigations: Circuit breaker 
pattern, or your (overloaded) service could also communicate a back-off time 
(applying back-pressure) to the caller.

○ Mitigations:
■ Capacity planning: have an idea how much different components need to 

scale (and possibly scale in different ways) depending on the overall 
system load. Also, take a close look at limiting “per-instance” resources, 
such as memory, sockets or threads.

■ Auto-scaling
■ Automated stress tests, which verify two things: 1) scaling of your 

application works as expected (or, if you are not using auto-scaling, the 
response time (or error rate) increases as expected). 2) Once the 
stressing calls stop, the system actually recovers: after a short recovery 
wait time, it serves requests normally again, with low response times and 
error rates.

● Dogpile - as in “a pack of dogs” (P. 78)
○ A temporary load surge caused by a bunch of components (“dogs”) putting load 

onto another component all at the same time. Typical examples are
■ (Mass) “server startup”, e.g. because of an outage (power cycle) or 

because of a scheduled update: they could cause problems with 
electricity, or put stress onto another component (such as the DB) 
because the starting servers are warming up their local cache (pulling 
data from the DB).

■ Too many Periodic (cron) jobs triggering at once
○ Mitigations:

■ For cron jobs, use a random clock slew to artificially delay jobs, spreading
the load.

■ Configure the orchestration layer to not run too many jobs (e.g. start 
servers) in parallel.

● Force Multiplier (P. 80)

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


○ When fully-automated control plane software (managing infrastructure or your 
deployments)...

■ …makes mistakes (e.g. incorrectly detecting the liveliness of 
components, thus unnecessarily starting or killing components)

■ …amplifies mistakes (e.g. pushing a bad human-crafted configuration into
all corners of your system)

■ …is in conflict with manual admin-activity (e.g. when an admin disables 
some components on purpose during a system migration, which the 
control plane incorrectly enables again, causing a system outage).

○ The mitigation is to carefully tune the control plane settings:
■ If the control plane thinks that almost everything is down, it might be an 

issue in the control plane itself (e.g. when it suffers from a network 
partition). -> escalate to a human

■ Use hysteresis: start machines quickly, but shut them down slowly. 
Starting is safer than shutting down.

■ When there is a huge drift between desired and actual state, escalate to a
human. The detection of the actual state might simply be off.

■ For tools used by humans interactively, implement several kinds of 
upper / lower limits that keep the human operator “in check”, warning 
them about unsafe operations. E.g. don’t spin up an infinite number of 
instances of your components, or don’t allow the number of instances to 
go below a certain threshold.

■ Beware of lag / momentum in your control loop: actions initiated by the 
control plane take time until they are detected by the control plane, so it 
should wait a considerable amount of time before scheduling or killing 
instances.

● Slow responses (P. 84-86):
○ When a component you call is slow, this can cause Cascading failures because 

the upstream component will also become slow and become vulnerable to 
stability problems. Slow responses tie up resources in the caller and callee 
component for longer time periods.

○ For websites (accessed by humans), slow responses lead to even more traffic, 
because users will start clicking the refresh button.

○ Mitigation:
■ Make up a Service Level Agreement for your service, as in “my service 

can deliver a response within X milliseconds, or it fails”.
■ Write load tests that check how your system behaves if the latency to 

external services increases significantly.
● Huge result data sets (P. 86):

○ While the result data sets of API or DB calls are small during development, you 
might get an (unexpectedly) huge result set as response in a production setting 
where data has accumulated for a while. This typically causes your system to 
slow down, or even crash.

○ Mitigation:
■ When making queries, always use some sort of (explicitly-configured) 

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


“paging” feature to limit the maximum response size. Don’t assume that 
the response size is small. Don’t assume that, when omitting paging-
related arguments, the destination keeps its “default behavior” - its 
behavior might change unexpectedly over time.

■ Be careful with ORMs: you might be able to limit the size of the original 
query, but you also need to explicitly limit queries when following an 
object’s associations.

5. Stability patterns
The following is a list of stability patterns:

● Timeouts (P. 92):
○ Timeouts avoid the cascading failures antipattern, by making sure that calls to 

other services do not block the calling thread.
○ Apply timeouts to all kinds of places in your code, such as:

■ Resource pools
■ Concurrency primitives offered by your programming language (e.g. 

semaphores, mutexes)
○ Think about extracting/modularizing the logic that deals with calling functionality 

with timeouts and handling timeout-related exceptions. This is much better than 
having similar timeout-handling code copied all over your code base. The 
handler-logic of this centralized code could also include a Circuit Breaker.

○ Consider queueing failed calls so that you retry them later
● Circuit Breaker (P. 96)

○ The Circuit Breaker (CB) pattern handles failures of unreliable external services. 
It is like a decorator put in front of these services, which may fail randomly, e.g. 
in front of a DB server. It avoids antipatterns such as cascading failures, 
unbalanced capacities, or slow responses.

○ Its purpose is to avoid unnecessary overloading of a component that the CB 
already determined has failed, and to avoid that the calling (client) system itself 
may also get overloaded to trying too many repeated requests on the failed 
component. The basic assumption (which typically holds in practice) is that it 
makes little sense to quickly retry calling other failing services, because that 
other service would simply fail again (usually for the same reason).

○ When errors occur when calling the external service, these errors are returned to 
the caller, but internally the CB counts the number of consecutive failures. If the 
number of failures exceeds some threshold, the CB “trips” and from now on, new 
requests made by the caller are immediately answered by the CB with a special 
CircuitBreaker error. i.e. the CB does not even try to use the service anymore (or 
it may try to switch to an alternative service).

○ The CB pattern is typically implemented using the decorator pattern, which 
internally uses a state-machine, with these states:

■ Closed: underlying service works, calls are forwarded - this is the initial 
state

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


■ Open: the “tripped” state, on a call, the call is not forwarded to the 
underlying service, the CB immediately returns/throws a CB error. After a 
time threshold has been exceeded (between the last failed call, and the 
call now), the CB switches to Half-Open.

■ Half-Open: intermediate state (between Open → Closed) the CB is in 
while trying to re-establish the connection. On a call, the CB forwards it to
the underlying component. If it fails again, immediately switch back to 
Open. If it succeeds, switch to Closed.

■ Half-Closed: intermediate state (between Closed → Open) the CB is in 
after the first failure occurred, but the CB still forwards calls to the 
underlying component, with the hope that it will recover (in which case the
CB goes to Closed again)

○ Some implementation details:
■ The normal variant of the CB pattern is "synchronous", i.e. the CB only is 

active when the client calls methods on the underlying service the CB 
decorates. But there are also asynchronous variants where the CB has 
an internal background thread which tries to reestablish the connectivity 
to the service while in Half-Open state.

■ The CB may deal with different error types differently, e.g. have varying 
time thresholds for different errors (e.g. handle “connection refused” 
errors different than “response timeout” errors).

■ The CB may have a fallback strategy, e.g. returning a cached value, or 
returning a generic response rather than a personalized/specific one. Or 
even call a secondary service if the primary one has failed. As this kind of
fallback-behavior has an impact on the business, you should involve all 
stakeholders when deciding how to handle failed calls.

■ Don’t just count the number of failures to decide when to switch from 
closed to open. Instead, count the failure rate, e.g. using the Leaky 
Bucket algorithm.

■ Add observability to the CB: log the state changes, offer metrics, track the
frequency of state changes, and do monitoring on too high frequency 
values. It can also make sense to allow ops people to explicitly trip or 
reset the CB from outside, e.g. via an API.

■ Have one CB instance per (operating system) process. It would not be 
economical to have a “central” CB shared by multiple processes, as this 
would introduce a new failure mode: the IPC to the CB, the CB itself could
fail, etc.

■ Use well-tested open source CB libraries whenever possible, to avoid that
you make e.g. thread synchronization mistakes when rolling your own 
implementation.

● Bulkheads (P. 98)
○ When considering the analogy to a ship, bulkheads are the compartments that 

you can willingly seal off and “sacrifice” by flooding them with water, in order to 
contain damage to those flooded compartments.

○ The most typical form of bulkheads is redundancy: have multiple servers, 

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


multiple instances of your components, and distribute your component instances 
to different servers. A load balancer then distributes the calls to the 
instances/servers. This way, your system does not collapse in case individual 
servers or individual services/components fail.

■ Another variant of bulkheads (at a finer granularity than the machines) is 
to pin applications to specific CPU cores. This avoids that a hungry multi-
threading application can bring down an entire machine.

○ Consider reserving some resources (e.g. threads handling requests) to 
exclusively handle dedicated functionality, e.g. admin access. This lets you, say, 
collect data for postmortem analysis, or request an orderly shutdown.

● Steady State (P. 101)
○ Basic idea: keep the usage of state-related resources “steady” (at a constant 

level), by making sure that you have some automated mechanism in place that 
releases resources as needed, for every resource that is continuously allocated.

○ Examples for such state-related resources are disk space or memory.
○ The mechanism that releases resources should not be a human, because 

whenever humans fiddle around in your system, there is a chance for them to 
introduce errors (e.g. misconfigurations).

○ Use monitoring, e.g. measuring the memory or storage consumption, or the disk 
I/O rate (comparing it to what the disk can offer) of your database.

○ Purging user-data is often very complicated. You need to make sure not to break 
referential integrity of your data (e.g. avoiding orphans (deleting too little), or 
broken references (deleting too much)). You also need to ensure that the 
components keep working after the data has been purged, e.g. using automated 
tests.

○ Log files are another common source of problems, as they can grow 
unboundedly. Ensure that you have either configured log rotation, or actually ship
logs to dedicated log-storage systems as quickly as possible.

● Fail fast (P. 106)
○ Whenever a called component can determine that the called operation will fail, it 

should return an error as quickly as possible, to avoid unnecessary allocation of 
resources in the callee and caller.

○ A common approach is to check (and pre-allocate) all necessary resources right 
at the beginning of an operation. For instance, the called system might require 
two external services. It makes sense to have pre-allocated clients for these 
services, and immediately fail when only a single one of these clients is not 
ready. If you are using CircuitBreakers, first check all of their states, before 
proceeding to call the underlying services. The basic idea is that we want to 
avoid that our component needs to call external service A (which works), but then
discovers that service B is not available, and thus our component must fail (thus 
it fails, but fails slowly - the worst kind of failure).

○ Also, limit the request size. For instance, offer paging and validate the upper limit
of the number of requested items. E.g. don’t allow the caller to request a list of 
9999999999999999 customers.

○ In general, even before pre-allocating resources, do input sanity checking and fail

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


early if there is a problem.
○ When failing, make sure to return the appropriate error codes / messages, e.g. 

differentiating “resource not available” errors from other application-level errors, 
such as “invalid parameters”. Only then can the caller react correctly (e.g. 
showing the correct message to the user in the frontend, or tripping the Circuit 
Breaker).

● Let it crash (P. 108)
○ The basic idea is: since writing defensive code to recover from errors is very 

difficult and unreliable, we instead crash and restart from a clean state as quickly 
as possible.

○ Make sure to choose a fine “crash granularity”. For instance, in a containerized 
microservice, it makes sense to only let the container crash and restart it, and not
restart the entire container runtime or the entire machine.

○ The “Let it crash” approach only makes sense if these requirements hold:
■ You have some supervisor in place that detects crashes and auto-restarts

the crashed components.
■ The start-up time of your component is fast. For instance, slow application

servers that have long start and warm-up times are not suitable.
● Handshaking (P. 111)

○ In a general sense, “handshaking” refers to the first phase of two (virtual) devices
communicating with each other, negotiating things. For instance, in serial 
protocols the receiver communicates how fast it wants to receive data, the data 
encoding, or when it is ready.

○ Handshaking is very common in lower-level protocols, but is almost nonexistent 
in high-level application protocols.

○ One particularly interesting aspect that is negotiated in handshaking is flow 
control a.k.a. throttling. We want our components to be able to protect 
themselves from being overloaded by the caller. One possible approximation of 
this is to use load balancers who are aware of the health of the services that they
are forwarding the requests to. For instance, the health check of a service could 
indicate that it is overloaded by returning a HTTP 503 status code, indicating a 
temporary problem.

○ The Circuit Breaker pattern is like a poor-man’s version of Handshaking, as it 
introduces a throttling mechanism for components that don’t support it 
themselves.

● Test Harness (P. 113)
○ Basic idea: set up faulty instances of components that emulate remote systems, 

doing wrong things on purpose (which can happen in practice), especially on the 
network level.

○ Examples include:
■ Refuse connections straight away
■ Place incoming connections in the TCP socket listening queue and let 

them starve there.
■ Let the TCP connection establish, but never send any data
■ Send RESET packets at random points of time

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


■ Report a full receive window, never draining the data (thus blocking the 
write stream of the caller)

■ Simulate packet loss
■ Simulate low data rates, including extremely slow response rates (e.g. 1 

byte every 30 seconds)
■ For HTTP/REST APIs:

● Send response headers, but don’t send the body
● Send data in a different format than expected (e.g. HTML instead 

of JSON)
● Send much more data than expected (gigabytes instead of 

kilobytes)
○ This is in contrast to “mock objects” whose purpose is to reproduce the expected 

behavior, conforming to the predefined specifications and interfaces.
○ It makes sense to use configurable proxy servers that let you inject such kinds of 

faulty behavior, such as limiting bandwidth, or adding jitter / latency. Tooling 
involves https://github.com/danielwellman/bane/ or 
https://github.com/Shopify/toxiproxy or https://github.com/tylertreat/comcast or 
https://github.com/sitespeedio/throttle 

● Decouple synchronous communication (P. 117)
○ The basic idea is to consider event-based architectures. They use asynchronous 

message brokers, eliminating many failure modes that synchronous calls have.
● Governor (P. 123)

○ Basic idea: if you use some kind of control plane that automatically performs 
reactive actions (e.g. a node autoscaler), the governor is an additional 
(integrated) algorithm or component that ensures that “dangerous” / “costly” 
actions are slowed down enough for humans to get involved (alerting them).

○ For instance, the governor would ensure that you are not spending a huge cloud 
bill because the autoscaler decided to (incorrectly) scale your node pool up to 
10’000 nodes.

○ It often makes sense to design the governor’s algorithm to be dynamic: for 
instance, the algorithm of a node autoscaler could slow down the rate of adding 
more nodes only once there are already many nodes. In other words, you are 
separating the actions into “safe” and “unsafe” ranges, and only do alerting within
the unsafe range.

6. Case study
Here the authors just tell a story of a production incident.

My only learning was on P. 134: if you collect metrics on the duration of requests, the metrics 
aggregation system (e.g. Prometheus) will only show those requests that actually have 
completed. In other words: requests that failed with a timeout won’t be shown.

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749
https://github.com/danielwellman/bane/
https://github.com/sitespeedio/throttle
https://github.com/tylertreat/comcast
https://github.com/Shopify/toxiproxy


7. Networking, (virtual) machines and containers
● The concept “design for production” is introduced. It means that you need to think of 

production issues carefully. Aspects include: (P. 141)
○ Networking (production networks work very different to those in test or 

development environments)
○ You need observability features
○ Distributed systems need orchestration of services (and their deployments)
○ You need to take care of security
○ Treating “ops” people as users too -> try to make their life easy

● NICs and DNS (P. 143): the admin of a machine configures a machine’s hostname. 
Together with its (search) domain, you get a fully-qualified domain name (FQDN), e.g. 
“server1.somecompany”. In addition, there is the DNS server, which may assign 
completely different “hostnames” to the machines. The problem is that many developers 
(and applications) assume that the IPs resolved from a host’s FQDN are the same IPs 
that are resolved from DNS queries, which is usually not the case in production, where 
machines have multiple NICs (with different IPs), which is also called “multi-homing”.

○ Multi-homing has several purposes, e.g. separating production traffic from 
administrative traffic, such as monitoring or backup traffic.

○ When you start your own server, make sure to bind the listening socket to the 
right IP, or bind it to all IPs. The book seems to recommend against binding all 
interfaces (see P. 145), but I would do so, to facilitate debugging a production 
incident, e.g. from an administrative NIC.

● There are many different deployment options for your applications / services: (P. 146-
153)

○ On a physical host - but you should avoid doing so, as the other options have a 
better resiliency (when you manage them with a control plane).

○ On a Virtual Machine. Be aware of caveats, such as overprovisioning done on 
the hypervisor level (e.g. allocating more virtual CPUs than physical cores are 
available), which leads to random/unexpected performance problems due to 
throttling (especially with “noisy neighbors”). The guest OS is unaware of these 
throttles happening.

○ In containers (Docker, etc.): be sure to adhere to containerization best practices, 
e.g. the 12-factor app rules.

● If VMs or containers are run in the cloud (vs. running them in a data center), be prepared
that VMs and containers are very ephemeral / temporary, as the cloud’s control plane 
could terminate them even more often than you would think, sometimes without 
reasoning.

8. Processes on machines
● For a reliable system, you need to make sure that your application’s processes (running 

on the different machines) are running the right code and that they are configured 
correctly. (P. 155)

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


● There is a lot of overloaded terminology which is interpreted differently by different 
people. For instance, what does “reboot the server” mean? Does “server” in this context 
mean the server (Linux) process, or the entire server machine? Make sure to 
communicate with precision within your team and across teams. (P. 157)

● Regarding “running the right code”: (P. 158)
○ Always use a version control system
○ Be cautious about your supply chain: consider not downloading parts of the build 

tool chain (e.g. compiler binaries, Docker images, etc.) from semi/untrusted 
Internet sources, because someone could silently inject malware. Also beware of
plugins of your build toolchain.

○ Always build production builds in CI, not on (often) polluted developer machines. 
Make sure that the repository that stores your application builds is secured, such 
that only the CI system can push to it.

○ Treat infrastructure and environments as immutable. E.g. Docker images are 
immutable: you take a “well-known” base image, apply some patches to it at build
time, but then during production, you no longer modify them. The (bad) opposite 
approach would be to keep patching software during production over long time 
periods, which leaves you with hard-to-reproduce system states.

● Regarding configuration (P. 161):
○ Don’t store unencrypted configuration data in a repository where everyone can 

see it. Use different approaches, e.g. storing encrypted configuration data, or 
store it in a separate repository which only select people have access to.

○ Configuration can be distributed in many forms: it should always be deployed 
separately to the application (i.e., do not hard-code configuration into your 
application). E.g. as environment variables, or files. For distributed systems, the 
orchestration engine / control plane needs to assist you with customizing the 
configuration values for the different instances of your services.

● Observability (called “transparency” in the book): the book describes (using convoluted 
wording) that you need to add metrics and logging to your application.

○ Regarding logging: consider borrowing the “correlation ID” concept from tracing: 
add the correlation ID to your log messages. This makes it easier to understand 
which log messages refer to e.g. the same request. (P. 169)

○ Regarding health checks: consider adding more information, such as the 
application version, whether the instance is still accepting work (as in 
“Kubernetes readiness probe”), and the status of the internally-used resources, 
such as caches, circuit breakers, or connection pools. (P. 170)

■ Of course all this information could instead be exposed as metrics.

9. Networking
● This chapter is about networking-related aspects, such as routing, load balancing, 

failover, traffic management and service discovery (P. 171)
● There are several discovery mechanisms (that usually also do load balancing, when 

grouping multiple instances of a specific service type). Which one is most suitable for 

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


you depends on your required rate of change (how often do services come and go). 
Examples are:

○ Static configuration: you manually register service instances somewhere. Only 
makes sense if you have a very low rate of change. (P. 172)

○ DNS: easy to configure, but requires manual updating. Load balancing is typically
done in a “round robin” style, which is not load-aware. There is no health 
checking. With DNS you can achieve Global Server Load Balancing (GSLB) 
where DNS is used at the top of the routing hierarchy, returning IPs of 
geographically-distributed load balancers. A GSLB also keeps track of the health 
and responsiveness of the load balancers. (P. 173-175)

■ You should generally use separate infrastructure / servers for DNS itself, 
rather than the servers that run your application / system.

● Load balancers (P. 178+)
○ They forward requests to one or more pools of service instances.
○ Have various configuration options, such as:

■ Health checking approaches
■ Behavior when there are no healthy instances left
■ Load-balancing algorithm to use
■ Caching behavior

○ Can be implemented in software or hardware. Hardware load balancers have 
better throughput and can handle more parallel connections, but are pricey 
(expect five digits for low-end configurations, six digits for high-end 
configurations). (P. 180)

● Characteristics of overloaded systems (P. 182+)
○ Systems that are overloaded from high demand usually fail because of queues 

filling up in different places. Each request consumes a socket on each tier of your
application (e.g. when the client calls service A which internally calls service B, 
then sockets are consumed by the client, A and B for that single request).

○ The number of available sockets on a server is limited, and the longer the 
duration of requests is, the lower the request throughput becomes. This leads to 
an unfortunate, non-linear relationship between incoming requests and 
(successfully) handled requests: the higher the rate of incoming requests, the 
more your servers are under load, thus the slower the processing of each 
request becomes, and thus the number of successfully processed requests 
decreases. And finally, due to users being impatient, users fire even more 
requests at slow systems, making them even slower.

○ Apart from sockets, you also need to keep an eye on network I/O bandwidth, 
which is also limited.

● Mitigation approach to avoid overloaded systems: fail fast, as early in your call chain as 
possible - the book refers to this as “load shedding” (P. 184)

○ The earlier you reject a request in your service call chain, the better - the best 
approach is to terminate requests right at the ingress / reverse proxy / load 
balancer. This avoids that resources are bound on several tiers before rejecting 
the request.

○ Technique #1: configure your services to have a short TCP listening queue 

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


(many programming languages and server-frameworks allow you to configure 
this for the server socket, see e.g. the backlog argument for creating a Python 
server)

○ Technique #2: add code to your service that immediately creates inbound 
sockets, but places the handling of requests in a thread pool. This lets you 
measure the (average) duration of handling requests (which includes keeping 
track of the response time of downstream services), and also lets you quickly 
reject incoming requests (e.g. returning HTTP 503), whenever the average 
request-handling-duration already exceeds your predetermined SLAs, or 
whenever there are already too many queued requests. 

○ Technique #3 (my idea, not from the book): for Kubernetes (or other systems that
distinguish between readiness (send-me-traffic) health checks and liveliness 
health checks): have “cascading readiness health checks”. Example: You have a 
call chain that consists of the reverse proxy (Ingress), service A and service B. If 
every functionality of A also requires B, and the readiness probe of B is already 
indicating problems, then the readiness probe (not the liveness probe) of A 
should also indicate the problem, even if A’s other dependencies (e.g. its own 
database) work fine.

● Service discovery (P. 188):
○ Generally, don’t attempt to write your own SD. Use existing implementations. 

These might come integrated with your orchestration platform (e.g. Docker 
Swarm or Kubernetes), or use services such as ZooKeeper/etcd (which, 
considering the CAP theorem, are pessimistic CP systems), or e.g. Hashicorp’s 
Consul (AP system)

10. Control plane
● “Control plane” = all the software and services that run in the background to make 

production systems handle load successfully. (P. 193)
● You should also have (production-level) SLAs for development-related 

tools/services/environments. If these go down, developers can no longer do their job, 
causing major problems. (P. 200)

● Observability (P. 200+): the book makes several notes about observability (called 
“System-wide transparency”), but with much less details than dedicated books (such as 
the Practical Monitoring book, covered here).

○ They recommend focusing on the business (monitor revenue) and what your 
users actually experience. Divide your business process into stages, making sure
that there are no rapid declines from one stage to the next. (P. 202).

○ Each group of people in your organization has different needs (e.g. accounting 
and marketing may need different kinds of alerts and dashboards).

○ Metrics: it’s impossible to create metrics for everything, but there are a few 
heuristics to decide which metrics to expose (P. 205):

■ Traffic indicators: Page requests, page requests total, transaction counts, 
concurrent sessions

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749
https://www.augmentedmind.de/2021/10/31/alerting-best-practices/
https://docs.python.org/3/library/socket.html#socket.create_server
https://docs.python.org/3/library/socket.html#socket.create_server


■ Business transaction, for each type: Number processed, number aborted,
dollar value, transaction aging, conversion rate, completion rate

■ Users: Demographics or classification, technographics, percentage of 
users who are registered, number of users, usage patterns, errors 
encountered, successful logins, unsuccessful logins

■ Resource pool health: Enabled state, total resources (as applied to 
connection pools, worker thread pools, and any other resource pools), 
resources checked out, highwater mark, number of resources created, 
number of resources destroyed, number of times checked out, number of 
threads blocked waiting for a resource, number of times a thread has 
blocked waiting

■ Database connection health: Number of SQLExceptions thrown, number 
of queries, average response time to queries

■ Data consumption: Number of entities or rows present, footprint in 
memory and on disk

■ Integration point health: State of circuit breaker, number of timeouts, 
number of requests, average response time, number of good responses, 
number of network errors, number of protocol errors, number of 
application errors, actual IP address of the remote endpoint, current 
number of concurrent requests, concurrent request high-water mark

■ Cache health: Items in cache, memory used by cache, cache hit rate, 
items flushed by garbage collector, configured upper limit, time spent 
creating items

● Make use of automated (repeatable) builds, and automated (canary) deployments (P. 
208/209)

● Command & control APIs (P. 210): only applies to those services that start slowly (or 
that need a long warm-up period before they have good latency, e.g. JVM-based 
services). Here, restarting the service instances on each configuration change would be 
hurting the overall system performance. Instead, it’s better to add a C&C interface to 
those services, e.g. implemented as HTTP REST API, to which you send control 
commands.

○ Examples for commands are:
■ Reset circuit breakers
■ Adjust connection pool sizes and timeouts
■ Disable calling specific external services
■ Reload / change configuration
■ Start or stop accepting load
■ Set or disable feature toggles

○ If you have many service instances, rather than having scripts which individually 
send commands (point-to-point) to each instance, think about using a command 
queue and a pub-sub messaging approach. However, be careful to avoid the 
dogpile anti-pattern.

● Consider using existing platforms (such as Kubernetes or Docker Swarm) and fully 
embrace their ecosystem and their native way of thinking.

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


11. Security
● Security is something that needs to be baked into your software and SDLC from the start

- it cannot be added at the end. (P. 215)
○ Also, you need to continuously work on security.

● The book rehashes the OWASP Top 10 - since it is already outdated, it makes more 
sense to look up the OWASP Top 10 directly on its website (skipped summarizing it 
here).

12. Case study
● Author tells a horror story where deployment was done completely manual, involving 

around 20+ people who have to contribute to getting the deployment out. That would 
cost about 100k USD per deployment.

13. Design for deployment
● Avoid “planned downtime” that is caused when you have to temporarily shut down the 

system to deploy a new version. To your end-users, downtime is always bad, no matter 
whether it is planned or not. (P. 242)

● The gist of this chapter is: as the development team should treat (zero-downtime) 
deployment aspects as a feature of the software, not as something that only the ops 
team is concerned with. That means that the dev team needs to take part in creating the 
CI/CD pipeline and all its tasks and tools.

● The book generally recommends the “immutable infrastructure” approach over the 
mutable server/infra approach, because it allows for better reproducibility. (P. 246)

● Continuous Deployment is important because it reduces the time between <developer 
commits code> and <code runs in production> to a minimum. This is good because 
undeployed code is unfinished inventory, a liability with unknown bugs and unknown 
behavior in production. It might even be a great implementation of a feature nobody 
wants. Until it is deployed, there is a high degree of uncertainty. Also, big (rare) 
deployments are always riskier than many smaller deployments. (P. 246)

● You can decide whether your CD pipeline automatically deploys to production, or 
whether a manual approval is necessary. It depends on your organizational context. 
Manual approvals slow the deployment process down, but if the costs of breaking 
production is (by your estimation) much larger than the costs of moving slower, you 
should have approvals. (P. 247)

● A deployment is often a lengthy process (it may take many minutes). Not only do you 
have to roll out many services (in parallel) that make up your system and do some 
additional preparation or clean work (macro-level), but you also have to consider the 4 
deployment phases of each individual service (micro-level), which are executed 
sequentially. (P. 248/249):

○ 1) Preparation: for mutable infrastructure: copying files into place. For immutable 
infrastructure: loading the new VM/container images to the hosts where they are 

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


needed.
○ 2) Draining: drain traffic from old instances, usually is very quick with stateless 

microservices, but for old Java monolith with stateful sessions it can take a long 
time (you should choose an upper limit)

○ 3) Update: apply the changes. For mutable infra, this could e.g. be moving files 
or bending symlinks, for immutable infra this phase does not really exist.

○ 4) Startup: start the new release, which often takes some time until it is ready to 
handle incoming traffic

● DB schema evolutions must be handled very carefully.
○ For relational DBs (tables), make sure that you don’t rename or delete tables or 

columns, but instead only do additive operations, followed by cleaning outdated 
data much later (e.g. several days/weeks later, once you are sure the destructive
operation is safe). Instead of deleting something, simply don’t use that column / 
table. Instead of updating/moving data, create new columns/tables and copy the 
data there. To ensure that data written by old code is also transformed to the new
structures (and vice versa), think about using DB triggers. Be careful to avoid 
cyclic effects of these triggers. (P. 250)

○ For NoSQL “schemaless” databases (which are not really without a schema - 
instead of the DB enforcing a schema at write-time, your app code enforces it at 
read-time), you have options such as (P. 252-255):

■ Add backwards compatibility support to your code, leaving the old objects
as they are in the DB, transforming them to the new versions only in 
memory. The downside of this approach is that you have to write a lot of 
code, and write tests for every entity version. Also, processing of objects 
with an older schema takes additional processing time.

■ Let your newly deployed code only handle objects with the new schema, 
and write a migration routine that migrates all objects in your DB at once, 
some time during the deployment. The main problem is that this could 
take minutes or even hours, and cause down-time

■ Let your newly deployed code handle both the old and the new schema. 
You still need to look out for consistency problems that could happen if 
you let the migration and the deployment procedure run concurrently: 
there is unpredictable behavior when the migration takes long, and also 
the (rolling) update to new code takes long (and you need zero-
downtime). For instance, old code might read objects which have already 
been migrated, having the new schema (which it cannot handle). 
Therefore it is usually recommended to separate the “migration 
procedure” from “code deployment”, timing-wise, doing the code 
deployment before the schema migration.

● You can choose between running a migration batch job in the 
background, or do an incremental approach (called “trickle, then 
batch” in the book). Here the new code migrates old-schema-
objects that it comes in touch with on-the-fly to the new schema. 
After the new deployment is in production for a while, you 
additionally apply a batch job that migrates all other objects still 

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


having the old schema.
● Both the incremental and the batch approach of course also work 

for relational DBs.
○ Always make sure to test schema migrations on production(-like) datasets. The 

problem with production data is that it may break invariants/assumptions, that 
you either a) have never considered/checked, or b) are only checked in your 
code now, but were not yet checked years ago when the data was created. (P. 
252)

● Handling the serving of static (web) assets (e.g. HTML, CSS or JS files) for rolling-
update deployments: P. 256)

○ These frontend-assets are often tightly coupled to e.g. frontend services (that 
generated the HTML that contains links to the frontend-assets), backend 
services, or there could be problems with the load balancer.

○ “Cache busting” is a commonly-used technique to ensure that clients load the 
correct (updated) version of a web asset, e.g. building a reference such as <link 
rel="stylesheet" href="/styles/app.css?v=a5019c6f"/>

■ A clever trick can be to use the short Git SHA as version identifier.
○ If your reverse proxy is unaware of rolling updates, it could happen that it directs 

the request #1 of a user to the new service instance (that delivers HTML that 
references new web assets), and requests #2 to #n (that load these assets) to 
older service instances (that don’t have these new assets yet). There are several 
methods against this:

■ Configure session affinity, where the reverse proxy transparently adds 
cookies or other headers to the requests and responses, to be able to 
correlate a specific user session, and always send it to the same frontend
or backend service.

■ Ensure that the new assets are always deployed to all hosts/sites before 
rolling out new code referencing these new assets.

● Clean-up phase (P. 259/260)
○ After a rolling update/deployment has completed, you will usually want a clean-

up phase, e.g. some hours/days later, after you are sure that you won’t need to 
roll back to an older version (because the new feature works). This involves 
aspects such as:

■ Finalizing the DB schema, e.g. deleting no-longer-needed tables, 
columns, views, aliases, triggers, or foreign-key constraints.

■ Delete no-longer-needed code that was able to handle outdated-schema 
entities from the DB (particularly when you use NoSQL DBs)

■ Review feature toggles, delete those you no longer need, because the 
feature is now always enabled anyway.

14. Handling versions
● This chapter is mainly about breaking vs. non-breaking API changes.
● There are many examples of breaking changes (P. 265):

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


○ Suddenly rejecting a technical way of doing a request, that used to work (e.g. no 
longer accepting gRPC calls, or no longer accepting XML encoding in a REST 
call)

○ Changing request URLs (for HTTP-based APIs)
○ Adding required fields to requests that used to be optional or non-existent
○ Forbidding optional request data that was previously allowed
○ Removing fields in the response that used to be guaranteed
○ Requiring an increased level of authorization

● The opposite, non-breaking changes, are achieved by generally accepting more input 
data than before, or to return more data than before.

● As soon as the implementation of a service is up, its users take the way the 
implementation works for granted, treating it as the “de facto specification”. Even if there 
is an official specification, your service users will rely on implementation-specific 
behavior. Therefore, even if you detect a mismatch between your implementation and 
the specification, you should avoid silently “fixing” the implementation with changes that 
would normally be considered breaking. Instead, update the incorrect specification to 
reflect the implementation’s actual behavior, then issue a new/fixed specification (with a 
matching implementation), that contains the breaking changes. (P. 266)

● Make sure to specify your service API with precise modeling languages, e.g. OpenAPI 
for REST APIs. (P. 266)

● Have dedicated testers (who were not massively involved in the service’s 
implementation) write contract tests for your API, to minimize the chance that there are 
mismatches between your API’s specification and implementation. (P. 266/267)

○ Do this for both your own APIs, but also write such contract tests for third party 
APIs that you consume. Regularly run those third party API contract tests, to 
automatically detect once their APIs start behaving differently than expected.

● For HTTP-based APIs, there are several technical approaches to versioning your API. 
The most common (and recommended) one is to put the version into the URL. There are
other, header-based alternatives, e.g. using the Accept Header for GET (e.g. 
“application/vnd.myapp.myapi.v1”), and Content-Type for PUT/POST (to indicate the API
version you are sending the serialized objects to that are contained in the request body).
(P. 269)

● Some tips for introducing breaking changes (P. 270):
○ If the client does not specify a desired version, assume a default, e.g. the oldest 

version that is not yet deprecated.
○ Keep supporting both the new and the old versions for a while.
○ For your own APIs, write tests that mix calls to the old and the new API version 

on the same entities. A common problem is that entities created with the new API
endpoints cause problems when trying to access them with old API endpoints.

○ Not covered by the book, but consider the tips presented in 
https://blog.stoplight.io/deprecating-api-endpoints:

■ OpenAPI supports the “deprecated” keyword, for endpoints
■ “Sunset” header, indicating the date once the API stops working
■ “Deprecation” header which can either be true, or indicate the date 

(usually some datetime in the past) when the API has become 

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749
https://blog.stoplight.io/deprecating-api-endpoints


deprecated. It’s a good idea to then also set the “Link” header that 
contains the link to the updated API endpoint.

15. Case study
● Authors tell a story about a failed launch where servers crashed when there were too 

many concurrent sessions.
● Real-world learnings about load testing: (P. 281+)

○ Typically, business people will tell you a ballpark for the number of concurrent 
users. There are several problems:

■ Their estimation may be quite wrong (as in: too low) → you should strive 
to ensure that your software can take a multiple of the estimated load.

■ It’s better to use a different metric, e.g. requests per second, than 
concurrent users, because you cannot properly measure the number of 
concurrent users (HTTP is stateless, users don’t explicitly mark the end of
their session, thus you can only estimate it by using session cookies and 
applying timeouts for declaring the end of a session - but this is an 
overestimation - you will “measure” more sessions than there are actual 
concurrent users).

○ Load testing is both an art and a science. You can never fully replicate real 
production traffic - there are always unexpected things that happen in production.
All you can do is:

■ Traffic analysis (from past production and test environments): you learn 
about typical page-flows / access patterns, number of requests per 
session, conversion rates, pause-time-distributions (where customers 
think about what to click next).

■ Experience and intuition: helps you extract mental models, choosing 
which aspects of the above traffic analysis are actually important to load-
test, and how to tune your traffic model to simulate “worst case” 
scenarios. Here you would also estimate how many of the users go all the
way through checkout (checkout is the most expensive phase, because it 
involves the most page views, and the most (long-lasting) interactions 
with external services).

○ When simulating, do not only build load test scripts that mimic real users with 
well-behaved browsers. But also simulate other actors, such as scrapers (good 
ones like search engines, and unwanted ones like third party bots that scrape 
your page for some reason, e.g. a shop bot that gathers the lowest prices for 
specific products). Expect that such other actors do not use real, well-behaved 
browsers, but may e.g. not respect a session cookie, causing a new session to 
be created on your server on each request.

16. Adaptation
● As the business in the real world changes constantly, so must our software, for it to stay 

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


useful. This applies actually not just to the software itself and its design, but also to the 
involved people, processes, and tools. (P. 289)

● Accelerating the decision cycle (P. 290+):
○ Most companies have some variant of a decision cycle, e.g. the Plan-Do-Check-

Act (PDCA), or Observe-Orient-Decide-Act (OODA).
○ Various processes and tools help shorten different phases of the decision cycle, 

e.g. DevOps, or lean and agile development methodologies.
○ Optimizing the “check” phase (where you verify your hypothesis) is often 

overlooked: you need to avoid moving fast while being clueless at the same time,
which would happen if you do not get good feedback from the customer (or not 
getting it fast enough). But you need that feedback, to plan your next iteration. If 
you find that your development and deployment iteration speeds are faster than 
you can collect feedback, spend time on e.g. an experimentation platform to 
speed up the observation and decision-making process. (The book unfortunately 
does not get any more specific than that). (P. 292)

○ Larger companies can benefit from a platform team (P. 293). It treats the various 
development teams as customers, providing them a platform as a service, which 
lets the developers build/deploy/operate their code more easily. The platform 
team builds APIs (of the platform) and maybe (CLI) tools (e.g. for provisioning) 
for the dev teams. The platform team does only build the platform, not the 
application itself, and is also not in charge of the application’s availability.

■ The feature set of such a platform includes:
● Allow easy specification of compute capacity (e.g. high RAM vs. 

high I/O vs. high CPU/GPU), or storage (e.g. blob vs. block vs. file
systems)

● Workload management, autoscaling, placement of service 
instances, overlay networking.

● Observability, including metrics/logs/traces collection, indexing, 
search and visualization.

● Message queueing
● Traffic management
● Network security
● Service discovery (e.g. DNS-based)
● Other common service gateways, e.g. for sending emails or SMS
● IAM, including users, groups, RBAC

■ Note: you can also buy platforms-as-a-service products, but this does not 
make your own platform team obsolete, it only gives it a head start.

○ Use incremental rollout / deployment strategies which reduce the impact of bad 
releases (which were not prevented by your automated tests). Concrete 
implementation strategies are canary deployments, or blue/green deployments - 
both have in common that you are incrementally directing traffic to more and 
more of the updated service instances, aborting the rollout in case you observe 
too many errors. (P. 295)

○ Consider sunsetting services instead of trying to fix them: sometimes it's better to
shut down specific parts of your application that have shown not to work well, 

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


rather than spending more money to fix it. If you have broken down your 
application into many smaller services, you can make the "cuts" in a more fine-
granular way. (P. 296)

○ The main point about the famous “2 pizza teams” (from Jeff Bezos) is often 
misunderstood as “having small teams” (to avoid communication overhead). But 
actually, such teams only work efficiently if they can act completely 
autonomously (all the way to production), not having to wait for others (e.g. for an
admin setting up a database). Having a platform team (see above) that has built 
a self-service platform is a great enabler for such teams. (P. 299)

○ Efficiency has the negative side effect that the resulting process becomes non-
generalizable and harder to change. A concrete example are build pipelines, 
which make you efficient (especially the optimized pipelines) but they are tailored
to a specific VCS, CI/CD platform and deployment platform, being not portable at
all. Thus, when choosing the concrete implementation technologies that make 
your process more efficient, check within your company and with your customers 
if your choices are really good, for the next few years to come (e.g. whether to tie
yourself to AWS or some other provider). (P. 300/301)

● Building a system architecture that can easily be adapted over time:
○ Sidenote: rather than thinking along the lines of “form follows function”, in 

practice you often have “form follows failure”. In practice, very often the final 
architecture/design is one that results from having fixed all the flaws of previous 
iterations, rather than being optimized to achieve its desired function in a 
particularly great way.

○ Take a look at various architectural styles to find the one that best suits your 
requirements, e.g. not only monoliths, but also microservices, microkernels, or 
event-based architectures. (P. 303)

○ There are ways of modularizing your application:
■ Check out https://scs-architecture.org/ for self-contained systems, where 

the basic idea is to have a breakdown of your system into multiple 
completely independent systems, along the functionality axis. It’s similar 
to microservices, but there are less SCS modules than there would be 
microservices, and there is also less communication between the SCS 
modules (compared to microservices).

■ The Design Rules book by Baldwin/Clark is discussed, which identifies 
many “module operators”. Examples are: (P. 308+)

● Splitting of modules: break a module into several sub-modules. 
Replace the former module with a facade whose interface is the 
same as the module had (before splitting it). The facade simply 
delegates the work to its internal sub-modules. This improves 
failure isolation: before, if the module was broken, the entire 
feature did not work. After the splitting, we can limit the failure to a
subset of the features.

● Module substitution: replace one module with another one, 
assuming that they both implement the same interface. There 
could be various reasons for why you substitute the module, e.g. 

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749
https://scs-architecture.org/


because the replacement is cheaper, better, etc.
● Choose a good axis when breaking down your system into 

modules, such that the division facilitates adding / replacing / 
removing modules. A typical example would be to choose 
functionality as axis (as done by the SCS architecture approach, 
see above). A counter-example would be to decompose your 
system along technical lines, e.g. having a database module, a 
HTML-rendering-module, a logging module, etc.

● Extract common functionality that is implemented (as slightly 
varying copies) in different submodules. As example, consider that
many of your modules internally implement an A/B-testing 
mechanism. It makes sense to extract this to an “Experimentation 
service”, that all your modules now simply plug into.

● Build a suitable information architecture where you decide which data structures to 
create. (P. 313)

○ This section is written in a confusing way. It touches on event-based 
architectures (and that you have to pay attention w.r.t. the versioning of the 
payload of events). But the Designing Data-intensive Applications book does a 
much better job at explaining these things.

○ The author describes well-known concepts (without mentioning them) in 
convoluted ways, such as HATEOAS for REST APIs, or bounded contexts from 
Domain-Driven-Design.

17. Chaos engineering
● Chaos engineering is about injecting different kinds of chaos into the production system, 

to verify that the system (as a whole) stays operational, and if it does not, to learn how 
the system breaks. Many problems only show up in the whole system (they cannot be 
observed from individual components, or be induced by unit or integration (stress) tests).
(P. 326)

● Prominent modes of chaos are: (P. 328)
○ Chaos monkey: kills instances of (auto-scaled) services

■ You do this because you expect a certain set of instances to fail anyway, 
for various reasons, such as bugs, or because the cloud’s hypervisor 
simply kills it for unknown reasons.

○ Latency monkey: injects latency into your internal network calls. Discovers 
problems such as:

■ Your service not properly using its “fallback” behavior when its calls to 
other services timed out

■ Problems caused when your service does several calls in parallel, and 
now the results arrive out of order.

○ Janitor Monkey (not further elaborated in the book, but it seems to be a service 
that auto-cleans unused resources. A set of rules define what counts as 
“unused”, and deletion does not happen immediately, but it is scheduled, 

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


notifying the owner of the resource ahead of time.
○ Conformity Monkey (not further elaborated in the book, seems to be a validator 

that verifies that cloud resources are properly configured)
○ Chaos Kong (not further elaborated in the book, but it seems to be like a Chaos 

monkey that kills an entire region of your cloud provider)
● Opt-in vs. Opt-Out (P. 329)

○ When your organization is new to chaos engineering, make it opt-in, as this has a
lower level of resistance. With enough success stories, you can make it opt-out. 
Once Opt-out, every service in production is subject to e.g. a Chaos Monkey. 
There is a way out (the opt-out), but those services are “stigmatized”, end up on 
a list in a database, which engineering management should regularly review, 
reminding the service owners of opting back in.

● Adopting chaos engineering has 4 phases (P. 330+)
○ Prerequisites:

■ Consider not using chaos engineering at all, if you are in an environment 
where (almost) every single request has a very high business value. In 
other words: if breaking the system also breaks your bank, don’t do it.

■ Limit the exposure (“blast radius”) of the chaos tests.
■ Ensure that you have really good monitoring. Be careful that the injected 

chaos does not affect monitoring itself. -> monitor your monitoring during 
your test sessions (during testing, it would be very suspicious if all your 
dashboards remained completely “green”).

■ Have a solid recovery plan. The system might not recover back to a 
healthy state automatically, after ending the test session. You must know 
what to restart manually (or other clean-up procedures).

○ Design the experiment:
■ Build a hypothesis, e.g. “replicated services should not be negatively 

affected by instance failures”, or “the application remains responsive, 
even under high-latency conditions”. Focus on the externally-visible 
behavior, not the internals.

■ Think about the evidence that would cause you to reject the hypothesis.
○ Inject the chaos (run the experiment):

■ A hard problem is to make the concrete choices as for which specific 
service instances, or network calls are interesting enough to inject a fault.

■ A simple approach is to use randomness: randomly select services, 
connections, etc. But randomness alone is not sufficient, you also need 
more targeted fault injections. A computer or algorithm cannot help you 
here, you need human thinking: analyze your system, e.g. looking at the 
call trees, or collecting actual traces in practice.

○ Automate and repeat:
■ If a chaos test uncovered a problem:

● Implement a fix
● Check whether other parts of your system might have the same 

kind of problem.
● Ensure that a similar test finds that the problem is really gone.

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749


● You can extend chaos engineering to the humans in your organization, too (P. 335).
○ E.g. randomly select 50% of your people and tell them that they shall not respond

to communication attempts.
○ You will quickly discover processes that no longer work once specific people are 

out of office. Try to fix these processes, e.g. by improving documentation, or 
changing roles, or even automating processes that used to be manual.

○ You should still have ways of aborting the chaos test, e.g. via a “code word”.

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2749 

https://www.augmentedmind.de/?p=2749

