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Preface
● Terminology: data-intensive systems are those where data is the primary concern: e.g.

the amounts of data, or complexity, or speed at which it is changing. It contrasts 
compute-intensive systems, where CPU cycles are the problem.

● The book wants to help engineers and architects to understand different technologies 
and their trade-offs.

1. Application characteristics
● Applications are usually built of standard blocks that have functionality such as: (P. 3)

○ Databases: store data so that it can be retrieved later in an efficient way, 
including search indices

○ Caches: remember the result of an expensive operation, speeding up reads
○ Stream processing / message queues: asynchronously handle messages, 

forwarding them to other systems
○ Batch processing: regularly do data crunching of large amounts of data

● Many of the systems on the market today are mixtures of functionality, e.g. Redis which 
is both a cache, database and a message queue.

● During development, many different questions come up, such as:
○ How to ensure correctness and completeness of stored data?
○ How to provide consistent and good performance, even under degraded 

conditions?
○ How to handle an increase in system load?
○ How to design a well-usable API?

● In data-intensive systems, the following application characteristics are desirable (P. 6):
○ Reliability: when the system works correctly (doing the right thing at the desired 

level of performance), even in case of software/hardware/human errors.
○ Scalability: reasonably react to growths in data volume, traffic volume or 

complexity
○ Maintainability: making sure that a system can be easily changed over time 

(adapting to changing environments and requirements, fixing bugs, adapting it to 
new platforms, keeping it operational), even when many different people (devs, 
ops) work on it.

● Details about reliability:
○ Fault = when a component of the system no longer behaves as specified (e.g. a 

bug). Failure = when the system as a whole stops providing the service to the 
user.

○ Systems that anticipate faults are called “fault-tolerant” or “resilient”. But as there 
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are so many different types of faults, you have to choose which specific fault 
types you want to “support”.

■ Hardware faults: the trend goes to distributing the system to many 
machines, and being able to tolerate the loss of entire machines.

■ Software faults: there is not much you can do, other than write tests 
carefully, and e.g. isolate parts of the system from one another, so that if 
one goes down (e.g. one process crashes), this won’t cause a domino 
effect.

■ Human faults: Humans are the main cause for outages (e.g. when they 
misconfigure the system accidentally). To reduce the risk, you should 
design the system to minimize the opportunities for error, or allow for 
quick and easy recovery from errors (e.g. via rollbacks, or gradual 
rollouts). Also, having detailed monitoring is important.

● Details about scalability:
○ You always make a system scalable according to a specific type of load. Load is 

described by load parameters, and they highly depend on your application. 
Examples are requests per second to a web server, or the ratio of reads to writes
in a DB. Sometimes the average number matters, sometimes the peaks do.

○ You then need to establish how the resources (or changing them) relates to 
changes in the load, which is called performance. You can look at it in two ways 
(P. 13):

■ When you increase a load parameter, and keep system resources (CPU 
etc.) the same, how is the performance of the system affected?

■ If you increase a load parameter, how much do you need to increase the 
resources if you want to keep a stable level of performance?

○ Performance numbers might e.g. be throughput (records per second processed 
by a batch system), or the response time of a request (e.g. web server).

○ However, single numbers are meaningless. Usually you care about performance 
distributions / histograms (P. 14).

■ Often, the mean is not a good metric, percentiles are better.
○ Coping with load:

■ It is often the case that whenever you want to be able to support one 
order of magnitude (10x) of the current load tolerance, you need to 
completely (or partially) rewrite the architecture of your system.

■ In practice you often have a mixture of vertical and horizontal scaling 
approaches.

■ Elasticity (= fully automated up+down-scaling) is often not needed, and a 
manual scaling process can be sufficient, and they have fewer “surprises”
(e.g. a high bill).

● Details about maintainability:
○ You can follow these 3 design principles for software systems to minimize 

maintenance pain:
■ Operability: make it easy for ops teams to keep the system running 

smoothly:

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2641 

https://www.augmentedmind.de/?p=2641


● Provide good instrumentation and metrics
● Don’t build in any dependency on concrete individual machines
● Provide good documentation and an easy-to-understand 

operational model (if I do Y, X will happen)
● Provide good default behavior, but also provide sensible 

configuration options.
● Do self-healing where appropriate, but also give admins control to 

override it.
■ Simplicity: make it easy for new engineers to understand the system - 

remove as much complexity as possible.
■ Evolvability/modifiability/extensibility: make it easy to make changes to 

the system

2. Data models and query languages

Data models
● The most prominent models today are relational (SQL), and non-relational. The most 

common ones for the latter are document and graph models. Each model has 
assumptions about how it is being used. Some usage modes are easy, some are hard, 
some are impossible. (P. 28)

● NoSQL is not a particular technology. Driving forces behind NoSQL included:
○ Better scalability than relational DBs could offer, including very high write 

throughput scenarios
○ Need for specialized queries SQL did not support
○ Frustration that the relational schemas are so restrictive - many needed a more 

dynamic and expressive data model (P. 29)
● Difficulty of SQL/relational model: there is the object-relational mismatch: you need a 

translation between objects and the (multiple) tables the data is stored in (in a distributed
way, when using a normalized schema). ORM frameworks hide most of this complexity, 
but cannot hide it completely (P. 30)

● Document DBs include MongoDB, RethinkDB, CouchDB, or Espresso.
● Arguments for Document data model (vs. relational model): P. 38

○ Better performance: data structures very closely reflect the objects, no JOINs are
needed

○ Schema flexibility, which you might e.g. need when you pull data from other 
sources over which you have no control over, or if there are so many different 
kinds of entities that it does not make sense to design a separate table/schema 
for each one.

● Arguments against Document data models: (P. 38)
○ JOINs are not that well-supported (although DB implementations are catching up 

here, but the JOINs are still less performant than those of relational DB engines)
○ Relational models have better support for many-to-many and one-to-many 
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relations.
○ Document DBs are slow if each document you store in the DB is huge in size: the

engine usually has to load the entire document into memory, even if you are just 
SELECTing a part of it. Also, when updating a document, the entire document 
has to be written to the DB again.

● Document DBs are not schemaless - there is always an implicit scha, but it is not 
enforced by the DB (when writing, or reading). Instead, the application implicitly imposes
a schema when reading. In contrast, relational models enforce the schema on write 
(usually, there are exceptions such as SQLite).

● Over time, relational and document DBs are converging (P. 42).

Query languages
● The coarse classification of query languages can be “imperative vs. declarative”. SQL is 

declarative. OTOH, imperative would mean that you are writing code that iterates over 
data sets and (iteratively) manipulates the response-set/list.

● MapReduce:
○ Allows batch processing of large amounts of data, across many machines. No 

SQL DBs like MongoDB or CouchDB support MapReduce operations
○ The map (aka. collect) step transforms the raw input data in some form, e.g. 

extracting the month of a timestamp.
○ The reduce step (aka. fold or inject) performs some kind of aggregation on the 

data, e.g. computing the sum. (P. 46)
○ Map and reduce must be pure functions without side effects, so that the DB 

engine can run them anywhere, in any order (P. 48)
● Graph-like data models

○ Graphs have vertices/nodes and edges/relationships.
○ Examples include social graphs (people), web graph (web pages), or road/rail 

networks (vertices are junctions, edges are the roads/rails)
■ However, in general, graph structures are not limited to such kinds of 

homogeneous structures, for instance, a person could reference a 
website, etc.

○ Two common representation models are (P. 50)
■ Property graph model (used e.g. by Neo4j, Titan, InfiniteGraph)

● Vertices have a unique identifier, a set of outgoing and incoming 
edges, and a collection of key-value pair properties.

● Edges have a unique identifier, the “start”/”tail” vertex, the 
“end”/”head” vertex, a descriptive label, and (optional) a collection 
of key-value pair properties.

■ Triple-store model (used e.g. by AllegroGraph, Datomic, etc.)
● Every information is stored in a simple three-part statement 

(subject, predicate, object), e.g. (jim, likes, beans).
● The subject is like the vertex of a graph. The object can either be:

○ A value of a primitive data type (e.g. int). In this case, the 
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predicate and object together are like a K-V pair, being a 
property of the subject/vertex.

○ Another vertex in the graph. In this case, the predicate is 
an edge in the graph.

● Declarative query languages for graphs are e.g.
○ Cypher: used for property graphs, used in Neo4j
○ SPARQL: a query language for RDF triple-stores - it looks quite SQL-like (P. 59)
○ Datalog: much older than the other 2 query languages, from the 1980s, 

reminiscent of “Prolog”, where you define logical “rules” that build upon each 
other. Still used today as the foundation of Cascalog which is used to query large
datasets in Hadoop. (P. 60)

● Theoretically, you can also put graph structures into relational databases, but it is not 
recommended to do so, because in relational DBs, you would like to know in advance 
which JOINs to make, but with graph structures, you want to have the flexibility to 
traverse edges once or more times (until you find a vertex you are looking for), i.e., the 
number of JOINs would not be fixed in advance. Modern SQL does have the “WITH 
RECURSIVE” to do this, but the queries look very bulky and are difficult to understand. 
(P. 53)

● Semantic web (P. 57): basic idea is that websites publish information as graphs in a 
machine-readable form. The Resource Description Framework (RDF) was chosen as the
general notation format. The vision of semantic web was to become the “database of 
everything”, but it was not really implemented much in practice.

○ Turtle or JSON-LD are concrete formats to specify RDF-compatible graphs and 
their nodes and edges.

● In graph databases, vertices and edges are not ordered, but when querying, you can 
order the results (P. 60)

● Graph vs. document DBs (P. 63):
○ Document DBs are good for use cases where data comes as self-contained 

documents, and relationships are rare, or at most 1:1 or 1:n
○ Graph DBs: target use cases where anything is potentially related to anything

3. Storage and retrieval
This chapter explains how different databases work under the hood. You need this 
understanding to decide which kind of database to use, depending on the type of read/write 
workload and the types of queries your app needs to make.

Storage engines
● The two most common types of storage engines are log-structured vs. page-oriented 

engines. (P. 70)
● Log-structured:

○ A log is an append-only data file (P. 71)
○ In the real world, an always-growing log file would not be practical. 
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Consequently, the logs are broken down into segments, and there is regular 
background compaction happening for these segments (P. 73).

○ Append-only logs are very efficient for writing, but reading would be very slow, 
because you’d have to scan the entire log file to find the most recently updated 
value. To avoid this, you also maintain indices, of which there are several 
variants. 

● Indices
○ No matter which index variant you choose, it will always slow down write 

operations. Therefore, indices are usually disabled by default, and you, the app 
developer, must explicitly define them, for the specific read queries that you want
to speed up. (P. 71)

○ Hash indices are a common approach for key-value pair data. The index could 
e.g. be implemented as a hash map that maps from the key to the storage 
address of the actual data.

■ Limitations of hash tables:
● They must fit in memory completely, so they are not suitable for 

huge amounts of data. Getting disk-based hash tables to work that
perform well is very difficult, because of the random access I/O 
patterns, hash collisions, etc.

● Range queries are not efficient: you cannot efficiently scan over a 
set of keys, such as foo000 - foo999. You would have to look up 
each key individually.

○ Log-Structured index (a.k.a. LSM, Log-Structured Merge-Tree) (P. 76-79)
■ Basic idea is to use an in-memory index structure, the “memtable”, e.g. 

implemented as AVL-trees or Red-Black-trees, that make sure that the 
incoming writes are sorted/ordered automatically (because these trees do
that automatically on insertion), and then regularly compact these 
memtables to disk, in the “SSTable” format (Sorted String table). The 
SSTable file format is a very simple serialization of the keys (and their 
value, e.g. the data pointer), s.t. all k-v pairs are written after another, the 
keys being are already sorted, and each key exists only once in a 
particular SSTable file.

■ Compacting multiple SSTable files can be done very efficiently, and does 
not require loading these files to memory: in a “merge-sort style”, you 
simply read two SSTable files side-by-side, look at the first key in each 
file, and copy the lowest key (according to the sort order) to the output 
file, and repeat.

■ You can construct an (even partial) memtable for existing SSTable files 
quickly and easily.

■ Reading works like this: first check the memtable, then the most recent 
SSTable file, then the 2nd-most-recent SSTable file, etc.

■ To avoid that the writes are lost that are only stored in the pure-in-
memory memtable (which is only “regularly” persisted), you can 
additionally write a recovery log file (in which the write keys are not sorted
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according to the time, but simply by insertion order). After a DB crash, 
you can then use this log file to restore the memtable.

○ B-trees (P. 79)
■ B-trees are much more popular than the Log-Structured Merge-Trees 

presented above. They are used in almost all relational DB engines, and 
many nonrelational ones.

■ While LSMs break the index down into segments, B-trees break it down 
into fixed-size blocks (a.k.a. pages). This is done to be more close to the 
hardware that also uses such pages/blocks. The pages contain the keys 
in sorted order, and can reference either other pages (that make a more 
fine-grained division of the index), or concrete values. See image on P. 
80 for an example. The engine uses a predetermined “branching factor” 
to decide how many splits in the index key ranges there are (usually a 
branching factor is in the range of  “several hundreds”).

■ When inserting a new item, you first traverse down the tree to find the 
page/node where to insert the k-v pair. If that page/node has no space 
left, you need to split that node into two equally sized ones, and update 
the parent node/page (and should that page also be full already, you also 
have to update the parent’s parent page, etc.). 

○ LSM-Trees vs. B-trees: as a general rule of thumb, LSM-trees are usually faster 
for writes, and B-trees faster for reads. The reading of LSM-trees is usually 
slower, because multiple SSTables need to be checked to find the value. 
However, in practice, the performance depends on your data and queries, so you
should always benchmark anyway. When benchmarking, you should not only 
vary the load (e.g. items written/read per second), but also the duration, i.e. how 
long you keep up this rate. You might notice that the performance of a database 
engine deteriorates over extended time periods, e.g. because you didn’t allow the
DB engine to do sufficient background clean-up work (such as SSTable 
compaction). You should also make sure the benchmark happens on the 
hardware (e.g. SSD vs. HDD) that you will use in your final production system. 
(P. 84)

○ A “clustered index” is one that also stores the actual data within the index data 
structure. A “nonclustered index” stores only the references to the data. A 
“covering index” is a compromise between the two, it stores some of a table’s 
columns within the index. It has the name, because the index alone can already 
fully “cover” (in the sense of “provide for”) the data requested in a query. (P. 86)

○ Multi-column indices (P. 87): they cover multiple columns of a table.
■ The most simple implementation form is the concatenated index, where 

all the keys of the different columns are combined to a single key, by 
concatenating them.

■ A more complex form are multidimensional indices, e.g. for geospatial 
data. These are special implementations, e.g. using R-trees. Interestingly,
you can “abuse” multidimensional indices also for non-geospatial data. 
For instance, for a weather app, you could build a multidimensional index 
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(date, temperature), to efficiently search for all observations during a 
specific year, where the temperature had a specific range.

■ Full-text search / fuzzy indices: these are special indices that allow for 
slight deviations (e.g. a specific edit distance) between the search term 
and the returned results.

● Pure in-memory DBs: (P. 88): traditional DBs have the advantage of requiring little RAM 
(which used to be expensive), but have a performance penalty, because they have to 
make sure that data is written to disk in a specific, hardware-friendly structure. However, 
since RAM has become much cheaper nowadays, we can also use pure in-memory 
DBs.

○ Some in-memory DBs, e.g. memcached, are purely meant as a cache, where 
data loss is acceptable if the process/machine is restarted.

○ However, in-memory DBs can still be persistent, e.g. by having a battery-
powered RAM (to cover power outages), or by regularly persisting the entire 
memory content to disk in the background, as well as writing a log of changes to 
disk. The main disadvantage here is that recovery (at the server restart) takes 
quite a bit of time.

○ What makes in-memory DBs faster for reading is often not due to the fact that 
they don’t read from disk. The OS keeps the most recently accessed disk pages 
in memory anyway, so a non-in-memory DB is also fast here. Instead, in-memory
DBs can be faster because they don’t have the overhead of encoding the in-
memory data structures to/from a format that is suitable for disks.

OLTP vs. OLAP databases
● OLTP (On-Line Transaction Processing) databases are user-facing (i.e. users indirectly 

cause read and write queries). There are typically very many (short-lasting) queries, and 
they need to be completed very quickly, to keep the overall system response time low. 
The term “transaction” is part of the acronym for historic reasons (as first DBs were built 
for business transactions), not for technical reasons (it’s not related to ACID-
transactions). The community kept using the “transactional” term, s.t. it refers to a group 
of reads and write that form a logical unit. (P. 90)

● OLAP (On-Line Analytical Processing) DBs are not used by end-users, but by business 
analysts. The queries per second are much lower than for OLTP, but each query may be
very expensive and take minutes or hours to complete. Usually, a query involves just a 
few columns, but millions/trillions of rows, and it computes some statistics/aggregates, 
such as the count, sum or average. The result of these queries are often put into reports 
that help the business make decisions (-> business intelligence). (P. 90/91)

● In principle, traditional DBs (which are OLTPs) can also be used for analytics (OLAP). . 
However, starting in the early 1990s, the term “data warehouse” (being an OLAP DB) 
was coined, being the dedicated database used for analytics. Reasons included: (P. 92)

○ Performance: OLAP-queries are expensive, and they could negatively impact the
performance of the OLTP database, if these queries were simply run on the 
OLTP database directly.
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○ Larger businesses have many OLTP DBs, and queries need to include all this 
data. Consequently, the idea is to transfer the data of all those DBs into a single 
(OLAP/warehouse) DB. Data warehouses are typically filled using the “ETL” 
pattern (extract, transform, load). This is either done periodically, as batch-
processing, or it could also be done continuously via stream-processing. In ETL, 
Extract means to read the data from the OLTP-source (limited to the “newest” 
rows that needs to be pushed into the OLAP system), Transform refers to 
transforming the data to a OLAP-typical schema, Load means to insert the 
transformed data into the OLAP DB.

● The OLAP DB is basically a read-only copy, as the OLTPs still hold the “ground truth”.
● OLAP DB schemas are typically relational.
● Internally, OLAP DBs often store data quite differently, and DB products usually focus on

being one type of database (OLTP or OLAP), but not both.
● Data warehouse vendors such as Teradata, Vertica, SAP HANA, and ParAccel have 

expensive commercial licenses. Amazon RedShift is a hosted version of ParAccel. 
Recently, many open source SQL-on-Hadoop projects have emerged; they compete 
with commercial data warehouse systems. Examples are Apache Hive, Spark SQL, 
Cloudera Impala, Facebook Presto, Apache Tajo, and Apache Drill (P. 93)

● Star and snowflakes schemas: most analytics DBs have a relational schema arranged 
like a star or a snowflake (P. 93-94):

○ Star schema: at the center you have the fact table, where each row is an event 
that occurred at some point of time. Some of the columns are attributes, some 
are foreign key references to other tables, the dimension tables. The dimension 
tables store the who/what/where/when/how/why of the event. The “star” schema 
has its name because, when visualizing it, the fact table is in the center, and it is 
surrounded by the dimension tables, and the connecting lines look like rays of a 
star.

○ Snowflake schema: a variant of a star schema, where the dimensions are further 
broken down into subdimensions. Snowflake schemas are more normalized than 
star schemas.

● Many (but not all) OLAP DBs are column-oriented storages: (P. 95)
○ A column-oriented storage does not store all the values of a row closely together 

on disk, but instead stores values of a column together on disk, e.g. each column
being in a separate file.

○ The reason why column-DBs are better for OLAP queries:
■ Each fact table row has many (sometimes hundreds) of columns, but a 

typical analytical query only reads a few (e.g. 5) of these columns.
■ When an OLAP query tells the DB engine to compute aggregates, a row-

oriented DB has to temporarily load every row (that matches the WHERE 
clause) into memory, loading all columns of that row (because that’s how 
the disk access works), which wastes resources/time. For queries 
involving just a few hundred/thousand rows, that wastefulness would not 
be a problem, but OLAPs typically contain millions or trillions of rows.

■ Most OLTPs are row-oriented.
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○ Sidenote: The Parquet format is also column-oriented -> the “column/row-
orientation” concept does not only apply to relational DBs.

○ Column-oriented storage can also more efficiently compress data (P. 97)

4. Data encoding and schema evolution

Problem description
● Every application’s code changes over time (due to changing requirements in the real 

world), and correspondingly, the internally-used data schemas also change.
● The core challenge is that schemas can diverge, because applications are 

deployed/updated at different points of time - but you still need the ability for newer 
software versions to read data written by older software versions (and vice versa). 
Example scenarios (P. 112):

○ Rolling upgrades for server applications that are spread to multiple nodes
○ Client-side applications are updated by users whenever they feel like it.

● The compatibility directions are:
○ Forward compatibility: older code can read data that was written by newer code.

■ This is tricky, because old code must be written s.t. it ignores additions 
made by newer versions of the code. In particular, if the old code reads 
an entity, updates it, and writes it back, you must ensure that unknown 
fields of the entity are still written back - in other words: you cannot 
completely ignore (as in “exclude”) the unknown fields during reading!

○ Backward compatibility: newer code can read data written by older code
● This chapter examines different binary/textual data formats for encoding (serializing) 

data, and how they handle schema changes.

Data serialization formats
● While applications often work with data using some proprietary layout in memory, they 

often need to serialize/encode the data to a byte stream, e.g. to save it as file, or 
transmit via the network to some other process. There are a ton of libraries that solve 
this problem:

○ Language-specific formats: (P. 113)
■ Many programming languages have built-in support, e.g. Java’s 

“Serializable” interface, or Python’s “pickle”.
■ Often, these libraries are not a good choice, for reasons like:

● You are limited to that programming language (a process written 
in another language cannot read the data).

● Security issues: the decoding process will instantiate arbitrary 
classes with arbitrary code.

● Versioning of the serialization format is sometimes missing, or 
poorly implemented (e.g. when upgrading the programming 
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language)
● Efficiency is sometimes bad (regarding run-time or produced 

message size).
○ Textual formats (P. 114)

■ Most prominent examples are JSON, XML and CSV
■ Their core advantage is that they are human-readable.
■ Problems with textual formats:

● Serializing/deserializing numbers is often a problem. For instance,
XML and CSV don’t have numeric types (they are written as 
string). JSON does not distinguish integers from floats, and does 
not specify a precision. Also, each programming language may 
have different numeric concepts, e.g. differently many bytes to 
store a float/int/long/etc., and there may be unexpected data loss. 
For instance, JavaScript has problems with parsing numbers 
larger than 2^53.

● JSON/XML don’t support binary strings (that lack a character 
encoding)

● CSV lacks schema definitions. XML/JSON do have schema 
languages, but they are very verbose and complex.

● The serialized data is very inefficient (regarding CPU time) and 
large (transmission / storage costs), compared to binary formats 
explained below.

■ Textual formats are still a good choice for public APIs. They are the 
“lowest common denominator”, and there’s a ton of tooling / libraries 
available.

○ Binary formats: (P. 115)
■ Binary formats are a good choice for company-internal tools, or when you

are working with very large amounts of data, where efficiency (w.r.t. 
space and time) becomes a serious concern.

■ There are several approaches for binary formats:
● Keep the data model, but change to binary encoding: for 

instance, you can keep the (in practice often schema-less) data 
model of JSON/XML, but encode the data as binary: examples are
BSON, BJSON, Smile, WBXML, Fast Infoset, MessagePack, etc. -
because the schema is missing, the object field names (keys) 
must always be written into the serialized data.

● Predefined schema with static code generators: the schema is
baked into the app-code at compile-time. Examples are Apache 
Thrift, or Protocol buffers (protobuf). (P. 117)

○ You define a schema in a framework-proprietary IDL 
(interface definition language). You define classes, the 
field names and field data types, and also assign a “field 
tag” number for each field. A code generator that parses 
the IDL file and can generate entity classes (and 
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parser/decoder code) for all kinds of programming 
languages.

○ This format is more efficient than approaches such as 
BJSON, because the field names can be omitted in the 
serialized output - instead, only field tag numbers are 
written.

○ Handling of forward/backward compatibility: when new 
code adds fields, old code can simply ignore these fields 
(fields whose tag numbers it does not know). Thrift etc. 
allows configuring whether fields are required, optional, 
and whether they have default values. When adding a new
field, you must make it optional (or make it required with a 
default value), or you would lose being backward 
compatible. Removing a field is like adding a field, but with 
backward/forward compatibility concerns being reversed. 
For instance, removing a (once) required field is not 
possible: old readers (where the field still is required) 
would consider such new serialized messages (that lack 
the removed field) to be incomplete and consequently 
reject or drop them unintentionally.

● Dynamic schema (specified in an IDL) that is transmitted 
alongside the data - no statically-generated classes are needed 
(e.g. Apache Avro)

○ You somehow make sure that the process that writes data 
transmits its “writer schema” alongside the data to the 
reader (who also knows its reader schema, which may be 
newer/different compared to the writer schema). This 
schema-transmission could e.g. happen at the beginning 
of establishing a connection (when e.g. doing RPC), or 
writing the schema to the beginning of a file. The library 
(such as Avro) resolves differences of the writer and 
reader schema using some advanced algorithm.

Modes of data flow
● There are many ways for data to flow from one process to another (for which you need 

(de)serialization). The most common ways are: (P. 129)
○ Via databases:

■ Chances are very high that some processes use newer code, and some 
use older code. E.g. in a “rolling upgrade” scenario.

■ Consequently, you might be interested in both forward and backward 
compatibility.

○ Via service calls. There are different kinds of service implementations:
■ Web services: a service is a web service if HTTP is used as the 
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underlying transport mechanism. The most popular approaches are 
REST and SOAP. While SOAP is still used in many large enterprises, it 
has become much less popular, particular in smaller companies.

● Among the reasons why REST is so popular is that it is much 
easier to debug (compared to binary formats), the vast amount of 
tooling (e.g. for testing, debugging, monitoring, etc.), being 
available in every programming language. (P. 135)

■ RPCs: using ready-made libraries that somehow communicate between 
different processes (usually over TCP, but not necessarily over HTTP). 
Most libraries try to do this in a “transparent” way, s.t. It looks as if your 
code was calling local methods, even though they are remote. (P. 134)

● RPC has been around since the 1970s. Older technologies, such 
as Java RMI or COM, are limited to a specific programming 
language or platform. Old systems like CORBA were cross-
platform, but were very complex and did not provide backward or 
forward compatibility. 

● There are various problems with the fact that some RPC libraries 
try to hide the “remote connection” aspect:

○ A local call is predictable (it succeeds or fails). A network 
call is not - the request or response might be lost, or the 
remote end might be slow to respond, or be completely 
unavailable. You have to anticipate such things, e.g. by 
retrying the request, or building the remote functionality 
such that it is idempotent (to avoid problems when only the
response of a RPC call is lost).

○ With a local function, you can pass references/pointers to 
objects stored in local memory. With RPC, you must 
serialize these objects (provided to the remote function as 
parameters). This can become problematic, e.g. for 
performance reasons (for complex objects), or in terms of 
functionality (e.g. out-parameters are not possible).

○ When doing RPC across different platforms or 
programming languages, the RPC library might hide the 
complexity of incompatible data types (e.g. that Python, C, 
Java, etc. all have slight deviations). Consequently, 
unexpected behavior, such as data loss due to rounding of
numbers, might occur, which are hard to find or debug. 
Such problems can never occur in a local call.

■ There are newer-generation RPC libraries
● These have interdependencies between data serialization format 

and modes of data flow. For instance, Apache Thrift and Avro 
support RPC. gRPC is an implementation using Protocol Buffers 
under the hood.

● They make the remoteness of the calls more explicit (not trying to 
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hide it), e.g. by exposing Futures. gRPC also supports streams, 
where a call can contain multiple requests & responses.

○ Via asynchronous message passing:
■ The message is not sent directly to a recipient, but goes through an 

intermediary, usually called message broker, message queue, or 
message-oriented middleware (MOM), which temporarily stores the 
message. (P. 137)

■ The message typically consists of some meta-data (e.g. a channel), and a
byte-sequence for the payload. You will benefit most by using a data 
serialization format (for the payload) that is backward- and forward-
compatible. (P. 138).

■ Advantages of having a message broker (over RPC): (P. 137)
● The buffering of messages improves the system reliability (in case

the recipient is temporarily unavailable, or because the broker can
redeliver messages to a crashed process)

● The sender does not need to know the destination of the receiver 
(e.g. IP:port), which is particularly useful in highly dynamic 
environments

● Messages can be sent to multiple receivers.
● There is a logical decoupling between sender and receiver (the 

sender does not care who exactly receives the messages).
■ Nowadays, there is a plethora of OSS for message brokers, e.g. 

RabbitMQ, ActiveMQ, HornetQ, NATS, Kafka. Chapter 11 has more 
details. (P. 137)

● (Distributed) Actor model (P. 138):
○ The actor model is a programming model for implementing concurrency. Instead 

of using threads, there are actors which have their own (local) state. Actors 
communicate with each other via asynchronous messages. Message delivery is 
assumed to be unreliable. An actor always processes one message at a time. 
There is usually some kind of framework that schedules actors.

○ The distributed version of the actor model simply schedules the actors onto 
multiple nodes, typically using a message broker. Popular frameworks include: 
Akka, Orleans, and Erlang OTP.

Part II: Distributed data
Reasons for why you want to distribute data to multiple machines: (P. 145)

● Scalability (as in: be able to handle more read/write requests/sec)
● High Availability (HA) / Fault tolerance
● Latency (for geo-distributed usage patterns)

However, keep in mind that while distributed data systems have above advantages, they also 
have many disadvantages (broadly speaking: higher complexity, and sometimes a limitation of 
how expressive the data model can be). (P. 147)
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The two general ways to distribute data is replication and partitioning. Replication makes 
copies everywhere, partitioning is basically “sharding”. These mechanisms can also be 
combined (P. 147).

5. Replication
● A basic assumption for replication is that your total amount of data is so small that each 

individual instance/replica can hold an entire copy of the data set.
● Different implementations vary on their concrete approach for replication. Aspects 

include: (P. 151)
○ Algorithm: single-leader, multi-leader, leaderless
○ Synchronous vs. asynchronous replication
○ Handling of failing replicas

Single-leader replication
● One of the most common solutions in relational databases (e.g. MySQL, Postgres, 

Oracle), but also for a few NoSQL DBs (e.g. MongoDB or Rethink DB). It is also referred
to as active/passive replication, or master/slave replication.

○ Leader-based replication is also found in other kinds of distributed systems, e.g. 
message brokers like Kafka.

● One of the replicas is the appointed leader (who accepts writes), all other replicas are 
followers (to which clients cannot write data to, but only read data from).

● The leader sends the write-changes to the followers in the form of a replication log or 
change stream. The followers take that log and update their local copy.

● Synchronous vs. asynchronous aspect: (P. 153)
○ In many relational DBs, the sync vs. async is a configurable option.
○ Sync replication advantage: follower is guaranteed to have an up-to-date copy 

(strong consistency) -> no data loss, if the leader suddenly fails.
○ Sync replication disadvantage: write ops would block if only a single follower 

becomes unavailable. This would make systems completely impractical. 
Therefore, in practice, “sync replication” means that only one of the followers is 
actually synchronous - the others are async. The system internally re-elects who 
is the sync follower, should one go down or become slow.

● Handling node outages (P. 156)
○ Nodes can go down (temporarily) for any kinds of (controlled or uncontrolled) 

reasons.
○ Follower failure: Basic idea is “catch up”: once up again, the follower 

reconnects to the leader and requests all data changes that occurred in the 
meantime. Once it has caught up, the follower accepts read requests again.

○ Leader failure via failover:
■ Failover means: one of the followers must be promoted to be the new 

leader, clients need to be told about the new leader, and the other 
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followers also need to know the new leader
■ There are many intricate details, e.g.:

● How to reliably detect a failed leader? Timeouts are used, but they
are not foolproof. What should the timeout value be? Consider 
that sometimes nodes are just temporarily slow, and starting a 
failover in a system that is already at load-capacity will make 
things even worse.

● How to elect the new leader? It should be a follower who has the 
most up-to-date data.

● If the old leader comes back, it has to be made to realize that it is 
no longer the leader and that it has to step down.

● What to do if an old leader comes back (and the follower that 
became leader back then was not fully up-to-date): what to do with
the writes the old leader still had saved? There might now be 
conflicts!

● What to do in a “split brain” situation where two nodes think they 
are a leader and accept writes?

Problems with replication lag
● Replication lag = delay between a write to the leader and it being readable from a 

follower. (P. 162)
● Under normal circumstances, it is only a fraction of a second and not noticeable in 

practice. But when operating near capacity (or when having network problems), the lag 
can increase to seconds or minutes.

● Longer replication lag causes inconsistent behavior in applications that are not prepared 
for this.

○ Most typically, you are interested in “read-after-write” consistency, which is a 
weaker variant of “strong consistency”, because it is only concerned with the 
writes/reads of a particular user, not of all users. A technique to implement this is 
that when you read something that the user (or maybe someone else) recently 
modified, read it from the leader. Otherwise, read if from the follower. The client 
could send meta-data along with the query that contains the most recent write-
timestamp of the client, and replicas then know whether they should answer the 
query (if they have received data stamped with newer or equal to that client-
timestamp), or whether they have to redirect the query to another replica (P. 163)

○ Another kind of consistency you might want is “monotonic reads”, or “things 
cannot move backwards in time”, or “after reading newer data, you won’t re-read 
older data” (P. 165). A counter-example (where monotonic reads consistency is 
violated) is when a client first reads a list of 3 items from a more up-to-date 
follower, then refreshes the list and only gets 2 items from a more out-of-date 
follower. One way to achieve it is to always direct reads of a specific user to the 
same replica

○ Another kind of consistency is “consistent prefix reads” (P. 165), which says that 
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if a sequence of writes happened in a certain order, then anyone who reads 
those writes also must read them in that order”. This is particularly a problem with
sharded DBs, where each partition operates independently (while the writes 
ending up in different shards)

Multi-leader replication
● Also known as master-master or active-active (P. 168)
● The basic idea is that every leader is also a follower to other leaders.
● The typical use case is geo-distributed scenarios (P. 168).

○ Another one is where a client wants to work “offline first”, and have a local cache 
of the data, e.g. CouchDB.

● It is also possible to combine the multi-leader with the single-leader (i.e., leader-follower)
approach, e.g. having one leader per data center (and within each data center, you use 
the single-leader approach).

● Advantages of multi-leader over single-leader (P. 169) in a distributed data-center (DC) 
use case:

○ Better performance (in terms of lower latency for writes, because now writes are 
propagated to other DCs in the background, and in terms of high availability, 
because we can just always accept writes made in one DC even if all other 
leaders in the other DCs are currently down)

○ Tolerance of DC outages (no failover needed, as would be the case with “single-
leader”)

● Main disadvantage of multi-leader approaches: conflicts can arise, which somehow need
to be solved

● Multi-leader replication is often implemented by external tools, e.g. Tungsten Replicator 
for MySQL/MariaDB, BDR for Postgresql, or GoldenGate for Oracle.

● Conflict handling (P. 172)
○ One approach is to avoid conflicts, e.g. by making sure that always a particular 

DC/replica is used for a reading+writing specific kinds of data (e.g. data of a 
particular user), but this is very susceptible to errors and edge cases (e.g. what 
happens if the user moves elsewhere and should now use a different DC?).

○ Every conflict resolution mechanism must ensure that the written data values 
eventually have the same convergent value. There are many techniques for this, 
such as: (P. 173)

■ LWW (Last Writer Wins), throwing away data from other writers (e.g. 
having the comparison be based on a random ID generated for each 
write, not necessarily on wall-clock-timestamps)

■ Merge the values together, e.g. by sorting them and concatenating the 
sort result

■ Record the conflict in a separate data structure that preserves all 
information - the application code then resolves the conflict later. This 
could (or could not) involve the user.

● Conflict resolution at write time: Many multi-leader replication tools
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also allow you to write conflict resolution handler callbacks, which 
cannot involve the user. 

● Conflict resolution at read time: When data is read, the DB returns
all conflicting items to the application, which can then involve the 
user in merging the result. E.g. done in CouchDB.

■ Chapters 7+12 have more details on conflict detection & resolution.
● Replication topologies: (P. 175) Various topologies can be used. Most commonly, you 

have a peer-to-peer (all-to-all) topology, but you could also have a “ring-buffer” (circular) 
topology, or specific tree-shaped topology (e.g. star-topology).

○ Some of the topologies (e.g. ring buffer) have poor fault tolerance. The peer-to-
peer topology has the best fault tolerance, but needs advanced mechanisms 
(such as version vectors) to properly detect the causality (happens-before 
relationship) of the distributed updates, to order the updates correctly.

○ It makes sense to thoroughly test a multi-leader database (including edge cases 
where nodes go down) to see whether it really behaves properly.

Leaderless replication
● Basic idea: every replica accepts writes from clients. (P. 177). Clients either send their 

writes to several replicas in parallel, or to a coordinator node (which then sends it to all 
replicas). The client assumes that a write was successful if it was confirmed by some 
kind of majority of nodes. Similarly, to read values, the client must read from several 
replicas in parallel and analyze the responses. Modern implementations use version 
vectors in the clients and servers to detect conflicts.

○ What was just described is “read repair”. Another approach (that some DBs use 
in addition to read repair) is “anti-entropy process”, where replicas send writes 
internally to each other to catch up, but the writes are not sent in any particular 
order (there is no replication log being used). (P. 179)

○ Note that there are also no “rollbacks”, e.g. if 3 replicas accepted a write and 4 
replicas did not, the write is not rolled back on those 3 replicas.

● Examples: DynamoDB, Riak, Cassandra, Voldemort.
● Writes when nodes are down (P. 178): leaderless DBs do not have a “failover” phase, 

see above for “read repair” and “anti-entropy process”
● The general approach for reading/writing is also called “quorum”. If you say that you 

write to w replicas and read from r replicas, and there are a total of n replicas, then r+w 
> n must hold. (P. 179) In many DB implementations, r/w/n are configurable. It is 
common to make n an odd number (e.g. 3 or 5) and to set r = w = (n+1)/2.

○ To consider an extreme example: setting w=1 (write is already considered 
successful if it was received by just one of the replicas), then, by following above 
formula, r would have to equal to n - this makes sense, because to determine 
which one is the most up-to-date value, you’d have to read from every replica, to 
be sure to also read from the one replica that did receive the write. However, in 
general it is not a good choice to have r or w be equal to n, because then reading
or writing requires all replicas to be up.
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○ Note: in reality there may be many more than n nodes, and the n is simply 
chosen as the set of designated nodes (for a client, e.g. based on its geographic 
region). There is the concept of the “sloppy quorum” where the client will send 
writes/reads to other, non-designated nodes in case it cannot get a quorum from 
its n designated nodes. These other non-designated nodes that accepted a write 
will then attempt to asynchronously propagate the writes back to a designated 
node, once possible. (P. 183/184)

● With leaderless replication, the consistency guarantees are somewhat wonky. Therefore,
you should only use such DBs if the requirements of your application can tolerate 
eventual consistency. You should understand the parameters w and r as only tweaking 
the probability of reading stale values, but not as strong guarantees.

○ See P 181/182 for explanations.
● Leaderless replication DBs are good for use cases that require HA, and low latency, but 

tolerate stale reads occasionally. (P. 183)

6. Partitioning
● The term “partition” is the most established term, but concrete products also use 

different terms, e.g. “shard”, or “region”, or “vnode” (Cassandra), or “tablet” (BigTable), 
or vBucket (Couchbase). (P. 199)

● Replication and partitioning are often combined, i.e., you do partitioning, but also 
replicate each partition to multiple nodes, to get HA. When using leader-follower 
replication,  a node may store multiple partitions and you would typically configure that 
node to be the leader for one of the partitions, and a follower for all other partitions. (P. 
200)

Partitioning of key-value data
● Deciding how to split data into multiple partitions is a difficult problem: you want to avoid 

a skewed distribution, because then the performance of your system suffers - an 
extreme example would be that one node gets almost all the load, while other nodes get 
almost no load at all. This one node would then be called a “hot spot”. (P. 201)

● Two commonly used approaches for partitioning are:
○ Partitioning by key range:

■ Assuming that your key can be sorted somehow (e.g. 
alphabetically/lexicographically), the basic idea is that you break down the
entire range (e.g. AAAAA-ZZZZZ) into multiple sub-segments, and each 
such sub-segment is a partition.

■ The distribution should most commonly not be a uniform distribution, but 
consider the amount of data you expect to have in each range. For 
instance, if your keys are titles of books, then the partition A-D (books 
whose titles start with letters A to D) would contain many more books 
than the partition W-Z, and you would get a skewed distribution if you 
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always made each partition cover 4 letters of the alphabet.
■ Often DBs let you configure whether you want to choose the partitions 

manually, or have the DB figure it out dynamically. (P. 202)
■ Core advantage of this approach: you can do range queries efficiently, 

because the keys are already in sorted order.
■ Examples: HBase, RethinkDB (P. 212)

○ Partitioning by the hash of the key:
■ A hash function transforms any input (the key) into a uniformly distributed 

number range, e.g. 0 - 2^32.
■ The main disadvantage is that you can no longer do range queries over 

your keys efficiently, because the hashes of the (adjacent) keys are now 
scattered over all partitions. Some DBs still support range queries, but 
need to send them to all partitions and the DB engine then combines the 
results - in the end, you need to read your DB’s documentation closely. 
(P. 204)

■ Even though key hashing reduces hot spots (= a particular partition 
becoming overloaded), you can still get hot spots if all the writes/reads 
are for the same key. DBs are unable to handle those hot spots well - you
need to handle them in your application in some way. E.g. breaking down 
hot keys into multiple sub-keys, e.g. by adding numbers to the end of the 
key (and maintaining a break-down table so that you know how to 
combine the data again for read queries). (P. 206)

Handling secondary indices
● By “secondary index” we simply mean other indices that you create for columns other 

than the PK - the use case most often is the ability to search (or sort) using these other 
columns (e.g. “find all cars whose color has value red”). (P. 206)

● Given that the data (tables) is split into partitions in some way, the core problem is how 
to then split the secondary indices themselves into partitions, to get the best 
performance. There are two approaches:

○ Document-based partitioning (a.k.a. “local index”): (P. 207)
■ In this approach, each partition has its own collection of indices, which 

cover only the documents stored in that very same partition.
■ When reading/searching data, the read query must be sent to all 

partitions, and the DB engine must combine the results. This approach is 
also called “scatter & gather”.

■ The main problem of this approach is performance: you get tail latency 
amplification. Tail latency (for an individual service) means that there is a 
latency distribution of responses being very fast (e.g. < 10 ms response 
time) in ~99% of the cases, but in 1% of the cases, you have a much 
higher latency, the “tail” latency (e.g. 100 ms). If you now have not one 
but many services, the probability of tail latencies increases (to more than
1%).
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■ Databases such as MongoDB, Riak, Cassandra, Elasticsearch, SolrCloud
or VoltDB use this approach.

○ Term-based partitioning (a.k.a. “global index”): (P. 208)
■ The DB engine creates a global index that covers the data of all 

partitions. Storing that global index only on one node would be bad 
(performance bottleneck, low availability), therefore this global secondary 
index is itself also being partitioned by “terms”, i.e, the index partitions are
different from the partitions of the data (primary keys).

■ The term originally comes from full-text indices, where “terms” refer to all 
the words that occur in a document. A typical form for a term is
“<column name>: <value>”, i.e., a (search) term also includes the 
<column name>, not just all the different values (that occur in the different
rows of the table).

■ Partition can happen by…
● the term itself: useful for efficient range queries
● the hash of the term: improves the even distribution of the index 

among the partitions
■ The main advantage of this approach: reads are more efficient (compared

to document-based partitioning): there is no scatter&gathering, but the 
query is sent to that partition that covers the term.

● The main problem is that writes are slower: creating/updating a 
document now means that you may have to update several 
partitions of the index. Because this takes time (and there might 
be failures, reducing the availability), DB engines using this kind of
approach typically update the secondary indices asynchronously.

Rebalancing partitions
● Rebalancing refers to the act of moving load (not necessarily just data, it could also be 

requests-rerouting) from one node to another. (P. 209)
● The motivation behind it: over the lifetime of an application, things change, such as

○ Higher load (which requires you to add more CPU via vertical or horizontal 
scaling)

○ Increased amounts of data (you need more disks or RAM)
○ Nodes fail occasionally (so other machines need to take over)

● Basic requirements for rebalancing:
○ After rebalancing, the load should be evenly distributed on the nodes
○ While rebalancing happens, the DB should still be readable and writable
○ Rebalancing should be as fast as possible, e.g. by moving only the minimal 

amount of data necessary
● Rebalancing strategies (P. 210)

○ Fixed number of partitions:
■ From the start you create many more partitions than there are nodes (e.g.

1000 partitions, even though you only plan to have 10 nodes), and you 
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assign multiple partitions to each node.
■ When adding more nodes to the cluster, these nodes “steal” a few 

partitions from each of the existing nodes. If a node is removed, the same
happens in reverse.

■ You only move entire partitions between nodes.
■ If you have some nodes that are more powerful than others, they can also

be assigned to more partitions than the other nodes.
■ This approach is used in DBs like Riak, Elasticsearch, Couchbase or 

Voldemort.
■ Downside of this approach: each partition has a management overhead, 

so it makes no sense to always choose e.g. 100’000 partitions (which 
would give you neatly “small” partitions that would also rebalance faster). 
There is no silver bullet here.

○ Dynamic partitioning (P. 212)
■ Especially suitable for DBs that partition by key range (see above, or P. 

202), where a fixed number of partitions would make little sense, because
if your data is skewed, then also the load would be very skewed.

■ Whenever a partition grows and exceeds a pre-configured size (e.g. 10 
GB), it is split into two partitions.

■ Main advantage: partitions (and their overhead) adapt to your data
■ To avoid that you initially have only one partition (which could be 

overloaded), you can tell DB engines to do some kind of pre-splitting 
where you configure the DB engine your best guess of how the 
partitioning should look like

○ Partition proportionally to nodes
■ You configure a fixed number of partitions per node. Thus, the partition 

sizes grow together with the data
■ When a new node joins the cluster, it randomly chooses a fixed number 

of existing partitions to split, and then takes ownership of one half of each
of those split partitions while leaving the other half of each partition in 
place. The randomization can produce unfair splits, but when averaged 
over a larger number of partitions, the new node ends up taking a fair 
share of the load from the existing nodes

■ E.g. used by Cassandra and Ketama
● Operations consideration: automatic vs. manual rebalancing (P. 213)

○ There is a fluid spectrum between “fully manual” and “fully automatic”. For 
instance, DBs like Couchbase or Riak make suggestions for a new partition 
assignment to the admin, who then has to approve it before it is applied.

○ Fully-automatic rebalancing is convenient, but dangerous because it is 
unpredictable. Since rebalancing is an expensive operation, it might happen too 
often and overload your nodes and the network.
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Request routing
● Given that your DB has many nodes, the question of routing is: to which node (IP/port) 

does the client have to send its read/write request? (P. 214)
○ More generally, this problem is referred to as service discovery and it applies to 

many more areas, not just DBs.
● Different approaches are:

○ Clients may contact any node (e.g. using a round-robin load balancer). The node 
handles the request if it is in charge of the partition, otherwise it forwards the 
request to the correct node, and also forwards the reply back to the client.

○ Clients send the request to a routing tier first, which knows about all the nodes 
and forwards the request to the right node. That routing tier is like a partition-
aware load balancer.

○ Clients themselves are aware of the partitions and connect to the correct node 
right away.

● No matter which approach you choose, it is important that the layer that decides which 
node to send a request to is actually correct about this decision. But nodes come and go
all the time.

● Many distributed data systems rely on a coordination service such as ZooKeeper to 
keep track of this cluster meta-data, e.g. Solr, Kafka or HBase.

● Other DBs rely on a gossip protocol that happens directly between the nodes (e.g. 
Cassandra or Riak)

7. Transactions
● Transactions are a good mechanism to reduce the issue of “partial failures”, such as: (P.

221):
○ The software or hardware of the DB fails, e.g. in the middle of a sequence of 

write operations
○ The application (that uses the DB) crashes at some random point, e.g. after 2 of 

4 of the DB operations it wants to make
○ The network is interrupted at any point of time, cutting the app off from the DB (or

DB nodes from each other)
○ Several clients try to write to the DB at the same time, overwriting each other’s 

changes
● Transactions group several read/write operations into a logical unit, executed atomically,

i.e., they are either all successful, or they all fail.
● Transactions simplify error handling for the application developer - they no longer need 

to worry about partial failure scenarios such as those presented above. (P. 222)
● Note: applications sometimes don’t need transactions!
● Single-object vs. multi-object operations (P. 228):

○ A transaction is usually a mechanism of grouping multiple operations that apply 
to multiple objects (P. 230).
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○ Examples are:
■ Foreign key constraints between different DB tables, which must remain 

valid
■ In a document DB data model (which lacks the JOIN functionality), data is

denormalized - transactions are useful to prevent denormalized data from
becoming out of sync.

■ Databases with secondary indices: whenever you change values, these 
indices also need to be updated

ACID definitions
● ACID has been defined in 1983 as follows (P. 224+):

○ Atomicity: should have been called “abortability”: it means that if you abort a 
transaction, all writes from that transaction are undone.

○ Consistency: invariants (i.e., statements that always hold) about your data, that 
must always be true. These are defined by the application. For instance, in an 
accounting application, the credits and debits must be balanced. The application 
has to define and ensure the invariants - not the DB engine (so “C” in “ACID” 
does not belong there, it was added to be able to build a nice acronym).

○ Isolation: concurrently executing transactions are isolated from one another - 
there are many different levels of isolation, the strictest level being serializable 
transactions, which means that when the transactions have all been committed, 
the result is the same as if they had been run in (some) serial order (even though
they actually executed in parallel).

○ Durability: the promise that once a transaction has committed successfully, any 
data it has written will definitely not be forgotten (exceptions are when hardware 
fails some time after it has reported that the data has been successfully written to
it, and there are no backups)

● Unfortunately, in practice, the ACID implementation of DB #1 does not equal the ACID 
implementation of DB #2 (P. 223). The term “ACID compliance” has become an under-
defined marketing term, because some subtle details are not clarified in the ACID 
definitions, so the DB vendors can choose their own interpretation.

Weaker isolation levels
● Because the serializable isolation level has severe performance problems, many DBs 

don’t implement it, but they instead implement weaker (non-serializable) isolation levels, 
which prevent some (but not all) concurrency issues

● Common problems with parallel transactions (and lack of isolation):
○ Dirty reads: transaction A sees data written by transaction B (even though B has 

not yet finished, i.e., has not yet committed these changes)
○ Dirty writes: both transactions A and B overwrite the value of the same data item 

(e.g. a specific row and column of a specific table) in parallel, and then A 
commits, thus overwriting the (not yet committed value) of B. If B were also 
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allowed to complete successfully, it would overwrite A’s changes.
○ Lost updates: if transaction A reads the value of a data item, then transaction B 

writes and commits a changed value for that data item, and then A also modifies 
and commits the value of that same data item. The value B changed is lost. (P. 
243)

■ Lost updates are different to dirty writes because B commits even before 
A has done its first (not-yet-committed) write operation.

■ Approaches that addresses/fixes Lost updates specifically by forcing the 
write ops to be executed serially are:

● Atomic write operations (P. 243), e.g. a special compare-and-set 
operations offered by the database, or putting the modification-
math into the DB itself, e.g. UPDATE counters SET value = 
value + 1

● Explicit (row) locking, e.g. with SELECT … FOR UPDATE, which 

causes the DB to lock all rows returned by the query. (P. 244)
■ Other approaches are to allow transactions that both write to the same 

rows in parallel, but once the user wants to commit, the transaction 
manager detects lost updates and refuses the commit. (P. 245)

○ Non-repeatable reads (a.k.a. read skew): a temporal inconsistency where 
transaction A reads different values for a specific data item over the course of its 
lifetime (and A has not written to this value itself). Can e.g. happen if you have a 
sequence such as: A reads a value, transaction B overwrites and commits the 
value, A reads the value again. This is problematic whenever you have long-
lasting read queries, e.g. analytic queries, integrity checks, or creating full 
database backups. (P. 238)

○ Write skew: a generalization of the lost updates problem, where the updates of 
the transactions each affect different data items (whereas, with lost updates, they
affect the same data item). (P. 248)

■ Can best be prevented using explicit row locking

Isolation level Solved issues/problems Implementations that 
provide this isolation level

Read uncommited Prevents dirty writes, but not 
dirty reads.

Dirty writes are prevented 
using row-level locks.

Read committed Prevents dirty writes and dirty 
reads.
It is the default level in many 
traditional SQL DBs such as 
PostgreSQL, Oracle or MS 
SQL Server.

Dirty reads are usually not 
prevented by locks (because 
that would cause stalling of 
all transactions if there is only
a single long-lasting 
transaction). The DB 
remembers both old 
committed values and new 
values set by the transaction 
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that currently holds the write 
lock. Other transactions 
reading the value are given 
the old value.

Repeatable read
(isolation level is not really 
standardized, nobody really 
knows what it means, it is 
e.g. confusingly called 
“serializable” in Oracle DB)

Prevents all of the above and 
non-repeatable reads.

Snapshot isolation (P. 238). 
Each transaction reads from 
a consistent snapshot 
created at the start of a 
transaction. Readers never 
block writers and vice versa.

Serializable Prevents all problems Implemented using 
approaches such as:

● Serially executing 
short transactions

● 2-phase locking
● Serial snapshot 

isolation
Details are below

Serializable isolation level
● It offers the highest level of isolation for concurrent transactions, preventing all race 

conditions / problems.
● Approaches of implementation:

○ Serially executing short transactions
■ Basic idea: database only allows one transaction at a time (concurrency 

is not allowed). To avoid that the throughput is horrible (which would be 
the case if transactions were long-lasting, waiting for the application or 
user), the transactions are not allowed to be interactive. Instead, the 
application must submit the entire transaction code to the DB, as stored 
procedure (which executes very fast, without waiting for I/O) (P. 254)

■ The data processed in a transaction should fit into memory, for the 
transaction to be fast (P. 256)

■ Approach is e.g. implemented in VoltDB/H-Store or Redis
■ Stored procedures have a few disadvantages, e.g. that you are restricted 

to a small set of programming languages, there is almost no ecosystem of
libraries, they are harder to debug, difficult to keep in version control or to 
deploy, more tricky to test, or integrate with monitoring systems (P. 255)

○ 2-phase locking (2PL)
■ Note: don’t confuse 2-phase commit (2PC) with 2PL!
■ Basic idea: multiple concurrent transactions are allowed to read the same

data items in parallel (as long as no transaction is writing). But once a 
transaction wants to write to a data item, it must exclusively lock it. 
Readers lock writers, and vice versa. (P. 257) 

■ This approach has its name because in the first phase, a transaction 
acquires a lock (while executing). The second phase, at the end of a 
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transaction, is when a transaction releases all its locks.
■ The DB engine automatically detects dead-locks between transactions 

and aborts one of the transactions (which the application then needs to 
retry).

■ Biggest disadvantage of this approach: performance is poor, not only 
because many of the concurrent transactions have to spend time waiting 
for other transactions to finish, but also because of the overhead of 
acquiring and releasing the locks. Thus, the overall latency of your 
database is hard to predict  (P. 258/259).

○ Serializable snapshot isolation (SSI, P. 261)
■ A rather new approach that is not implemented by many DBs yet. It is an 

optimistic approach that has a very small performance overhead, still 
allowing for high levels of concurrency. 

● E.g. used in Postgres
■ The approach is very similar to snapshot isolation (used to guarantee 

repeatable reads), but with added checks (at the end of a transaction) 
that abort those transactions that would have violated the serializable 
isolation level. (P. 262)

■ SSI performs better than 2PL because there are no locks that 
transactions need to acquire/release. However, if you have a very write-
heavy system, the percentage of aborted transactions will be quite high. 
(P. 265)

8. Issues with distributed systems
This chapter looks at all things that can (and will) go wrong, in theory and in practice, in a 
distributed system. It also looks for some mitigation strategies (in the sense of “don’t do/assume
this or that”), but actual solution techniques are discussed in the follow-up chapters.

Faults and (partial) failures
● Distributed systems consist of many parts, and when only some (but not all) parts fail, 

this is known as partial failure. They can happen (non-deterministically) at any time, 
randomly. (P. 275)

● There are many kinds of hardware failures, such as: (P. 275)
○ Power loss (generator not kicking in) -> hardware is rebooted (=”power cycle”). 

Can apply to just a single rack, or even an entire data center (DC)
○ Backbone failures (entire DC becomes unreachable)
○ Networking hardware (e.g. switches) failing, e.g. causing network partitions in a 

DC
● With a distributed system, the approach generally is to anticipate such partial failures, 

and to tolerate them, keeping the system still operational. We need to build fault-tolerant 
mechanisms into the software. In other words: build a reliable system from unreliable 
components.

○ In contrast, a supercomputer (which is similarly powerful as a distributed system, 
computationally-speaking, but is still like a single-node machine) handles partial 
failures differently: it escalates it to a total failure: if something crashes, the entire
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machine stops working (e.g. kernel panic).
● The larger a distributed system is, the more likely it is that something is broken. For a 

system with thousands of nodes, some nodes are definitely broken at any given time. (P.
276)

● It always pays off to artificially create partial failures in a testing scenario, to see what 
happens.

Unreliable networks
● The Internet and internal networks in a DC are of type asynchronous packet-switched 

networks. Here the network gives no guarantees as to when or whether a packet will 
arrive. (P. 278)

○ There are also other kinds of networks, synchronous ones, which are circuit-
switched networks. They guarantee a maximum RTT, thanks to provisioning 
fixed resources (the circuit). However, in practice such synchronous networks are
not used, because people favor that operations complete as fast as possible, 
which requires that the network can handle bursty traffic patterns. Synchronous 
networks would be a horrible waste of resources, because each circuit is given a 
fixed data rate, and to allow operations to complete quickly, you would have to 
reserve huge data rates per circuit, and the circuits would be sitting idle most of 
the time (and you would also get only a few circuits in total if each one is “fat”). In
other words: latency guarantees of a circuit come at the cost of reduced 
utilization of the transmission medium, making it expensive. (P. 285/286)

● Things that can go wrong in an asynchronous packet network:
○ The request may get lost (e.g. unplugged network cable)
○ Request waits in some queue (e.g. when a router somewhere along the route is 

overloaded)
○ Network route is fine, but the remote node/process may have failed (e.g. power 

failure)
○ Remote node still lives, but can temporarily not respond (e.g. a “process pause”, 

see below, e.g. Garbage Collection cycle)
○ Remote node/process did process the request, generated a response, but the 

response was lost by the network (or the response was delayed due to some 
queue).

● Main problem: when a client does not receive a response, it can (mostly) not 
distinguish / determine which of the above issues applied. (P. 279)

○ There are some exceptions, e.g. specific error codes you get such as 
“destination not reachable” (no route to host) or “socket connection refused” (if 
the remote node lives, but the destination process is dead). Your client might 
also have access to (proprietary) information, e.g. by calling the proprietary API 
of a network switch that can tell the client about link failures on the hardware 
level.

● In practice, this inability to distinguish the underlying issue makes the task of detecting 
faults much more difficult (e.g. when a load balancer needs to stop sending requests to a
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dead node, or when a single-leader replication DB needs to detect that the current 
leader has failed). (P. 280)

● The go-to approach to detect node failures is to use timeouts, but there is no silver 
bullet. Too short timeouts enable the system to be more responsive, but it might detect 
faults too quickly and declare nodes dead that are just slow. The effect is that the same 
actions are executed twice (by the old node declared dead, and a new node taking over 
the responsibilities). Transferring responsibility over to another node also makes the 
distributed system (as a whole) slower, temporarily. The worst case is “cascading 
failures”, where all nodes declare all other nodes as dead - everything stops working. (P.
281)

○ It is usually better to use dynamic instead of constant timeout values. The system
continuously measures round trip times (and its variability / jitter) and 
automatically adjusts the timeout values, based on the distribution of response 
times. E.g. using a “Phi Accrual failure detector”. Something similar is done in 
TCP to determine the retransmission timeouts. (P. 284)

● In practice, network failures occur all the time, even with redundant network hardware. 
Human error (e.g. misconfiguring a router or switch) is the most common cause of 
outages. There are crazy things that can go wrong, e.g. a shark biting an undersea 
network cable, or an automated router firmware upgrade causing havoc. Also, just 
because a connection works in one direction, it does not imply that it also works in the 
opposite direction (one-sided packet loss). (P. 279)

● There are many places in a network request where queueing comes into play. Places of
queueing include: (P. 282)

○ The network switch
○ The OS (when the application is temporarily not accepting new incoming packets

for various reasons, including that the OS does not allocate CPU time slots to it, 
e.g. because of a noisy neighbor)

○ The VM hypervisor (if applicable), when a VM is temporarily suspended - the 
Virtual Machine Monitor (VMM) queues the packets in this case

○ TCP’s flow control (a.k.a. Congestion avoidance, or backpressure), where the 
sender queues packets before even sending them into the network.

● TCP vs UDP: UDP is good when you don’t need reliability or flow control - it’s good for 
use cases where delayed data is not useful.

Unreliable clocks
● Clocks are a very important concept in distributed systems, because they measure 

durations (time intervals), and they can provide (absolute) points of time. (P. 287)
● Distributed systems often need to determine a (global) order of events. This is made 

very difficult by the fact that message transmissions are unreliable and arbitrarily 
delayed. (P. 287)

● Using absolute points of time provided by (hardware or software) (wall) clocks is 
generally a bad idea. Clock synchronization is close to impossible to get right, as there 
are many reasons why it might fail (see P. 290). Hardware clocks drift unpredictably (e.g.
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based on hardware temperature). The synchronization of clocks causes them to jump 
forward or backward in time, and they also may have poor resolution. (P. 288)

○ Reading absolute timestamps should be implemented as reading a confidence 
interval (e.g. Google’s TrueTime API in Spanner does this). But in practice, the 
OS APIs will give you a very precise-looking (single) timestamp, because it is 
already quite difficult to even estimate the uncertainty interval. (P. 293)

● Alternatives to wall clocks are monotonic clocks and logical clocks:
○ Monotonic clocks are called this way because they are guaranteed to move 

forward in time. Their absolute value is meaningless (you always need to 
compute the difference). There are still issues with these clocks: the speed at 
which time of a monotonic clock moves forward is still determined by the 
hardware clock, which may be influenced by NTP (called “clock slewing” - not 
skewing!). The resolution is usually good (up to microseconds).

● Another problem is process pauses (P. 296), where the active thread is paused for 
longer periods of times (seconds, or even minutes).

○ There are many reasons for this:
■ Many programming language runtimes have a garbage collector. Even 

though the GC can be tuned, you still must assume the worst (long GC 
pauses)

■ A hypervisor might suspend a VM for an arbitrarily long time period (e.g. 
when migrating a VM to a different host).

■ End-user devices (e.g. laptops) might be suspended/resumed at any time
by the user.

■ The OS context-switches to another thread. If the load is high (e.g. if 
there are many threads), the pause time might become quite long. Thread
suspension happens also during I/O requests, and sometimes there might
be I/O access at surprising places (e.g. Java’s classloader when it lazily 
loads class files, or when you have disk swapping configured in the OS, 
and a memory page is not really in RAM but on disk and thus must be 
loaded into RAM first).

○ Threads are not notified of such pauses at all. (P. 298)
○ For single-node machines (and multi-threaded code) there are good tools for 

making applications thread-safe, e.g. mutexes, semaphores, etc. But there is 
often no good equivalent toolset for distributed systems. (P. 298)

○ There are techniques that allow you to eliminate process pauses, e.g. using hard 
real-time (operating) systems (RTOS) where all levels of the software stack are 
customized to provide real-time guarantees (with an upper bound). That is, not 
only the OS-provided stack, but also the programming language runtime above 
need to be optimized for real-time use cases, which only few languages do. 
Developing real-time applications is therefore very expensive, and thus it is only 
done in safety-critical embedded systems (e.g. airbag software). For “normal” 
commodity server software/hardware, implementing these real-time guarantees 
is not economical. (P. 299)
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What a system knows, and what is really true and false
● Given that the observer (e.g. a node in a distributed system) has only very unreliable 

means for measuring the state of the system around it (it cannot even trust its own 
judgment, e.g. in case of process pauses), it is almost a philosophical question to ask: 
“what does the observer (really) know to be true or false in the system?”. (P. 300)

● Because a single node cannot reliably judge a situation, distributed systems commonly 
rely on some kind of quorum, that is, some kind of (majority) voting among multiple 
nodes. (P. 301)

● What is often done is to design a system model (where you proclaim assumptions about 
the behavior of the system), and then design algorithms and prove that they behave 
correctly within the just-designed system model. Unfortunately, the system model is not 
the same as the real system (on real hardware), so you can only prove algorithms and 
models to be correct, but not actual implementations of them. (P. 300)

● The problem with locking (i.e., a distributed mutex) (P. 302): a simple/normal mutex (as 
known from single-node systems) does not work in a distributed system, because any 
single node cannot truly rely on knowing that it holds the lock. There are lease-based 
locks (which are time limited), but they are still unreliable (e.g. thanks to process 
pauses). A common approach to solve the problem are fencing tokens: whenever a lock 
server grants a lock or lease, it also returns a fencing token (e.g. a monotonically-
increasing number). Whenever the lock is used to access a resource, the client also has 
to provide the fencing token, and the resource has to validate that this token is (still) 
valid.

● Distributed systems discussed in this book generally assume that no node is deliberately
(or accidentally, due to a bug) “lying” to other nodes. That is, we assume that there are 
no Byzantine faults. Designing algorithms to be Byzantine-fault-tolerant is very 
complicated and therefore too costly. (P. 305)

9. Consistency and consensus
This chapter discusses some general approaches / algorithms / abstractions (such as total 
order broadcast or consensus) that provide certain consistency/consensus guarantees. These 
abstractions hide problems such as disk failures, crashes or race conditions. Whenever you 
have a working implementation of such an abstraction (suitable for your application), you can 
implement your application on top of this abstraction, reusing it. (P. 321)

Concrete example: given a solution for consensus, and you are developing a database (= the 
application), you can use consensus to elect a new leader in case the old leader fails.
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Consistency guarantees
● Most of the replicated databases provide at least eventual consistency, which is a very 

weak guarantee. It is hard for developers to understand (who are traditionally used to 
stronger guarantees from traditional RDBMS). Developers must understand the 
limitations, and may not (accidentally) assume too many guarantees. (P. 323)

● There are many stronger consistency models, but their two common problems are (P. 
323):

○ Worse performance
○ Less fault-tolerance and availability

● The strongest consistency guarantee is linearizability / strong consistency / atomic 
consistency. It means that the system behaves as if there was only one copy of the data,
and that all operations on it are atomic. Reads are always including the most recent 
writes. (P. 324)

○ Use cases of linearizability: (P. 330/331)
■ Electing a single leader
■ Locking (e.g. to implement leader election - the lock holder is the leader)
■ Uniqueness guarantees
■ When multiple backend systems work on the same data (that was e.g. 

inserted into a distributed DB), and each backend system expects to read
the most recent writes

○ Services such as ZooKeeper or etcd can implement many of the above use 
cases. The Java library Apache Curator provides higher-level recipes on top of 
ZooKeeper (like leader election, shared locks, barriers, etc.).

○ Note that you should think carefully whether your use case really needs 
linearizability. For instance, you may conceptually want a uniqueness guarantee, 
but in practice it might make more sense to allow “overbooking” and fix it after the
fact (maybe compensating customers for their trouble with a coupon), because 
you can then use more scalable systems that generate more business (which 
generates more money than it costs you to compensate unhappy customers). (P.
331)

○ Replication is a common method to make a system fault-tolerant, but not every 
kind of replication mechanism can be made linearizable: (P. 333)

■ Multi-leader replication is not linearizable, because they asynchronously 
propagate writes and there could be conflicts.

■ Single-leader replication (DB) implementations may or may not be 
linearizable. E.g. if they use snapshot isolation, they are not. Also, in 
certain situations (such as split-brain) they are not.

■ Leaderless replication is usually not linearizable because of the internal 
techniques they use. For instance, sloppy quorums (that are usually used 
in practice instead of strict quorums) are not linearizable. And even strict 
quorums are not, because of timing issues, as illustrated on P. 334.

○ The costs of linearizability:
■ Poor availability: any system that is linearizable loses availability once 

there is a network partition. (P. 336)
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■ Poor performance: it has been mathematically proven that the response 
time of read/write requests in linearizable systems is at least proportional 
to the uncertainty of delays in the network; this uncertainty is high in 
unreliable networks such as the Internet. (P. 338)

○ Side note about the CAP theorem (P. 337): it only considers one consistency 
model (linearizability) and one kind of fault (network partition), but it ignores 
network delays, dead nodes, or other trade-offs. Thus, it has little practical value 
when designing distributed systems. Today, it is only of “historical” interest.

Ordering guarantees
● Ordering of events or operations is an important concept in distributed systems (P. 339)
● If you consider causality (e.g. the “happens-before” relationship): causality requires 

ordering of the events, such that a cause-event comes before the effect-event. (P. 340)
○ Systems in which events are causally ordered are “causally consistent” (e.g. 

snapshot isolation)
○ However, causal order != total order. In a total order, you can compare any two 

events (of the set of all events) and therefore bring them into a sequence. With 
causal order, however, you only have kind of “tuples” that causally order two 
specific events. Mathematically-speaking, causal order is a “partial order”. (P. 
341)

○ Linearizable systems require total order. Any system that is linearizable also will 
preserve causality correctly. (P. 342)

○ Causally-consistent systems are a popular choice because they don’t have the 
performance/availability-penalties of linearizable systems, but still offer the 
strongest possible consistency model that does not slow down due to network 
delays and remains available during network partitions. Causally-consistent 
systems are like a “middle-ground” between weak-consistency systems and 
linearizable systems.

○ The book (written in 2017) claims that, at the time, not many production-grade 
implementations of causally-consistent systems exist yet.

● Total Order broadcast (TOB): the basic idea of TOB is that linearizable systems do not 
only need to have a total order, but you also need to know when this total order is 
actually “finalized”. (P. 348). For instance, there are other, cheap ways (in terms of 
implementation/storage complexity, being cheaper than Version Vectors) such as 
Lamport timestamps (described on P. 346), which can also provide a “total order” for 
certain data structures (such as monotonically-increasing counters). But with such 
approaches, the total order only emerges once you have collected all read/write-
operations in existence. In practice, this is too late - you need a finalized total order in 
near real-time. Therefore, the basic definition of TOB is that it is a protocol for 
exchanging messages between nodes.

○ TOB requirements:
■ Reliable delivery: no messages are lost - if a message is delivered to one 

node, it must be delivered to all nodes
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■ Totally-ordered delivery: messages are delivered to every node in the 
same order

○ Consensus services such as ZooKeeper or etcd implement TOB (P. 349)
○ TOB is asynchronous: you do not know when a message is delivered. (P. 350) In

contrast, linearizability is a recency guarantee. However, you can implement 
linearizability on top of a TOB mechanism/implementation. For instance, to 
implement a uniqueness constraint, a node writes a message <node ID, 
payload> to the TOB log and reads the log back - if its message appears in the 
log as first message with its own node ID and payload, the write is considered to 
be successful.

Distributed transactions and consensus
● On the surface, consensus seems like an easy-to-understand concept: you want several

nodes to agree on something. However, there are many subtleties to this topic. (P. 352)
○ A formal definition is: one or more nodes propose values, and the consensus 

algorithm decides which one of these values should be used by everyone. (P. 
364). The algorithm must satisfy the following properties (P. 365):

■ Uniform agreement: after the algorithm is done, every node decides on 
the same outcome

■ Integrity: once a value has been decided, it is not changed anymore
■ Validity: you can only decide for a value v if v has also been proposed
■ Termination: the algorithm must make progress - if some nodes fail, the 

other nodes must still reach a decision (using a majority) - thus there is a 
limit to the number of node failures the system can tolerate (fewer than 
half of the nodes may crash)

● Term definition “atomic commit”: when multiple nodes agree on the outcome of a 
transaction (commit vs. rollback). (P. 353)

● Research background: “the impossibility of consensus” (P. 353): the FLP impossibility 
theorem proves that there is no algorithm that can reach consensus, if there is the risk 
that a node may crash. In practice, nodes can crash, so it shouldn’t be possible to build 
consensus algorithms, right?

○ Wrong: the system model assumed in the FLP proof is a very restricted system 
that assumes a deterministic algorithm that is not allowed to use any clocks or 
timeouts. But in practice we can use those, and identify nodes that we suspect to
have crashed. This lets us solve the consensus problem in practice, even though
sometimes our suspicion about the node-lifeliness may be wrong.

2-Phase-Commit (2PC)
● 2PC is a consensus algorithm. It is used in many (traditional relational) DB products. 

Note that there are other algorithms based on e.g. Raft or Paxos, presented below, 
which have better fault-tolerance than 2PC.

● In the atomic commit problem, you must ensure that each node only commits once it is 
certain that all other nodes involved in the transaction will also commit. (P. 355)
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● 2PC has a new component, the coordinator (a.k.a. transaction manager). It may be a 
separate service, but often it’s just a library embedded into the application that wants to 
start a transaction.

● 2PC algorithm: (P. 356)
○ When the application wants to commit, the coordinator begins phase 1: it sends a

prepare message to all nodes. If a node answers with “yes”, it promises that it will
be ready to commit the transaction in the 2nd phase (e.g. blocking any other 
transactions that would cause conflicts)

○ Phase 2: If all nodes replied with “yes”, the coordinator sends out a commit 
message to all nodes. If one or more nodes replied “no”, an abort message is 
sent to all nodes.

● Note: verbose details of the 2PC algorithm are found on P. 357
● Problems:

○ If the coordinator fails after it sent the prepare message, the whole system can 
become stuck, because the nodes must wait for a commit or abort message from
the coordinator. (P. 358)

○ The coordinator itself is also stateful, it must reliably store enough data to be able
to resume after a crash, e.g. the node responses it received for a prepare 
message. (P. 357) It also makes the coordinator a single point of failure (P. 363)

● There is a 3PC algorithm but it assumes networks with upper bounds on the delay for 
the processing in the nodes and for the network. (P. 359)

Fault-tolerant consensus algorithms
● 2PC is not very fault-tolerant. There are better alternatives, such as Viewstamped 

Replication (VSR), Paxos, Zab, or Raft (P. 366)
● Most of these algorithms don’t work as described above in the abstract system model 

(where nodes propose values and then decide on one value). Instead, they decide on a 
sequence of values, which makes them TOB algorithms. (P. 366)

● Projects like ZooKeeper or etcd use such algorithms (like Raft) under the hood. They 
often have DB-like APIs, but they are not supposed to be used by you as an application 
developer directly. ZooKeeper etc. are designed to only store small amounts of data that
fit into memory, and they have only a small number of nodes (to make consensus 
decisions more efficiently, e.g. 3, 5, or 7 nodes) - the data is replicated among all those 
nodes. (P. 370)

○ Your actual application (e.g. Kafka) can have many nodes (more than 7), and 
these nodes are then clients of one of the ZooKeeper nodes. In other words, you 
are outsourcing the coordination work to services like ZooKeeper. (P. 372)

○ Service discovery is another common use case for tools like ZooKeeper (e.g. 
looking up the (IP) address of a service - although there are often better (more 
performant) solutions for service discovery.

○ Membership service: keeping track of a set of nodes that is considered to be 
alive. Of course it can still happen that this list is not truly correct, e.g. if a node 
was prematurely declared dead.
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Distributed transactions in practice
● Real-world distributed transactions have slower performance, e.g. MySQL becomes 10 

slower, due to the additional file system sync calls and message round trip times. (P. 
360)

● XA transactions: distributed transactions are typically done within a (homogeneous) 
DBMS/software (where all nodes run the same software). But sometimes you also want 
distributed transactions (atomic commits) in a heterogeneous system that consists of 
different applications, e.g. DBs or message brokers. There is the “X/Open XA” standard 
(eXtended Architecture) that implements 2PC transactions across heterogeneous 
technologies, with wide adoption, e.g. in relational DBs and message brokers. (P. 361) 
Note that XA needs to settle on the lowest common denominator of the features of all 
participating systems, and thus it cannot detect some problematic conditions, such as 
deadlocks (P. 364).

Interlude: Derived Data
● The next chapters look at how you can integrate different kinds of data systems which 

make up an entire distributed system. The different data systems are each optimized for 
different use cases (e.g. caches, indices, data stores, analytics systems, etc.), which is 
why you need to combine multiple ones (P. 385)

● The data systems can be categorized into 2 categories (P. 386):
○ Systems of record: they are the (single) source of truth which holds the 

authoritative version of the data. Data is typically written to this system first, often
in normalized form.

○ Derived data systems: stores derived data (often denormalized) that has been 
transformed in some way, often from the system of record. The trade-off here is 
that we waste (disk) space (due to the copies) in order to get better performance.

● Most data system implementations (e.g. DB engines, query languages, etc.) are not 
inherently a system of record or a derived data system - they are just tools. It depends 
on how you choose to use them.

● There are three basic kinds of systems: online and offline systems, and a mixture of 
them (P. 389):

○ Online systems generally assume that a human triggered a request and is 
eagerly waiting for the response. Thus, the response time should be as low as 
possible, and (high) availability is very important.

○ Offline systems, a.k.a. batch processing systems, take large amounts of 
“bounded” input data (whose size is known at the start of the processing, and it 
does not change during processing), and produce some output data. The jobs 
can take a long time (even days), and there are no users eagerly waiting for the 
result. Here, throughput is important (processed items per some fixed time 
period), not so much the response time or availability.

○ Nearline (Near-real-time) / stream processing systems: they are somewhere 
between online and offline systems. Like batch processing jobs, but they usually 
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don’t take as long as batch jobs, and they are triggered by events of the system.

10. Batch processing
● The chapter looks at different kinds of batch processing systems:

○ UNIX tools
○ MapReduce
○ Dataflow engines
○ Graph processing engines

● Any kind of batch processing framework needs to solve the problems of partitioning 
(distributing data and computation to multiple nodes) and fault tolerance (recovery when 
individual tasks fail). (P. 429)

UNIX tools
● Basic idea: connect the inputs and outputs of several specialized tools (that do one thing

well, e.g. sort, uniq, head, cat, awk, …) together, using pipes or redirect operators (< or 
>). (P. 394)

● Many of these tools are highly optimized w.r.t. memory use. That is, tools like sort 

transparently handle larger-than-memory datasets by temporarily writing data to disk. (P.
394).

● The uniform interface that allows passing data through these tools are simply file 
descriptors that contain streams of (uninterpreted) byte arrays. Since in UNIX many 
things are represented as files, the source/destination can also be devices or network 
connections. (P. 395) Often, tools support both loading from a specific file (path), or 
using stdin/stdout. The tools themselves are not aware of the complete chain of tools 
you are running, nor do they need to be.

MapReduce and HDFS
● MapReduce is similar to UNIX tools, but it distributes the computation across 

(potentially) thousands of nodes. (P. 397)
● Whereas UNIX tools use files or stdin/stdout as input and output, MapReduce jobs read 

and write files on a distributed file system. Hadoop and HDFS is a very popular 
implementation, it is an OSS re-implementation of Google FileSystem GFS. Various 
other distributed file systems exist, e.g. GlusterFS. (P. 398)

● Unlike HPC systems, MapReduce nodes do not need any special prerequisites. They 
only require a (TCP) connection to the other nodes.

● HDFS details: there is a central NameNode server that tracks the HDFS nodes and 
which file blocks are stored on which node, and of course many (file system) nodes. On 
each node there is a HDFS daemon process that offers an API to retrieve or store files 
on that node. To achieve HA, file blocks are replicated to multiple nodes. (P. 398)

● You need to implement two functions:
○ Mapper: it is called once per input record. It needs to extract and return 0-n key-

Summary © 2022 Marius Shekow / AugmentedMind / https://www.augmentedmind.de/?p=2641 

https://www.augmentedmind.de/?p=2641


value pairs.
○ Reducer: The MapReduce framework collects all k-v pairs produced by all 

mappers, and calls the reducer function with an iterator over the collection of 
values of a specific key. From those, the reducer produces some output records.

● Basic job execution flow (P. 399/400):
○ 1) The MapReduce framework has an input format parser that parses input files 

stored on the distributed FS into input records. You typically provide a directory 
path on the distributed FS as input, all its contained files are processed.

○ 2) The MapReduce framework calls your mapper function which produces k-v 
pairs.

○ 3) MapReduce framework stores the k-v pairs of step 2 in a special way (using 
techniques similar to SSTables and LSM trees, see chapter 3 -> storage engine),
resulting in pre-sorted files, which the MapReduce framework then efficiently 
feeds to the reducers.

○ 4) The MapReduce framework calls the reducer functions with sorted k-v pairs.
● As a user of MapReduce, you do not need to worry about the parallelization details. The 

mappers/reducers don’t need to know where their input comes from or goes to (the 
MapReduce framework typically transports the code to where the data is, e.g. shipping 
JAR files, which is faster than sending data to the code). (P. 401)

● MapReduce workflows: because any individual MapReduce job can only do one round 
of sorting, people often chain multiple jobs together, which is called a workflow. 
However, MapReduce does not explicitly support workflows, which is why people create 
individual jobs, and set the output directory of one job to be the input directory of the 
next job. Various workflow schedulers are used in practice, e.g. Apache Airflow, or 
Spotify’s Luigi. (P. 402) Because it is difficult to write complex multi-job MapReduce jobs,
various abstraction-tools have emerged which are (nowadays) historic, such as Apache 
Pig, Apache Crunch, or Cascading (none of them have been maintained since 2018).

● Common use cases of MapReduce jobs (P. 411/412):
○ Build search indices
○ Build a database, e.g. for a recommender system

● The Avro format (see chapter 4) is often used in practice to store data in HDFS. (P. 414)
● In a sense, the HDFS is still like a “data lake” where MapReduce jobs convert 

unstructured data to structured data. (P. 415)
● The Hadoop ecosystem offers many more data processing models than MapReduce, 

e.g. SQL.

Other batch processing tools
● From a performance perspective, the main problem of MapReduce workflows with many 

jobs is that it always “materializes” / persists the intermediate results of each job. This 
takes time (also because the result data is replicated to several nodes), and could be 
considered a waste of storage. Also, a second job must always wait until the first job has
completely finished (having written its intermediate output). (P. 420)

● Dataflow engines such as Apache Tez, Apache Spark or Apache Flink, which allow you 
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to model the flow of data through several processing stages, try to be better. Similar to 
MapReduce, they repeatedly call user-defined functions (“operators”) which process one
record at a time, and take care of the parallelization for you. However, these operator-
functions are not the alternating map() and reduce() functions. Various optimizations are 
in place that speed up job execution significantly. Consequently, MapReduce-style 
workflows can be executed much faster with such dataflow engines than with e.g. 
Hadoop itself. (P. 421)

● For graph processing, there are dedicated algorithms and tools (e.g. Spark’s GraphX 
API, or Apache Flink’s Graph API called “Gelly”). They need to solve the problem (of 
answering a, say, GraphQL query) iteratively, because many problems require 
propagating information from one vertex to the other (think of queries where the 
scheduler needs to follow a series of edges). (P. 424/425)

11. Stream processing
● In practice, lots of data arrives as (unbounded) streams. Trying to solve them via batch 

processing (chapter 10) would be a bad idea. You would have to artificially divide the 
work into chunks (e.g. a day’s worth of data), but then you would get the output quite 
delayed (which might be too slow for some users). (P. 439)

● What batch processing calls a “record” is called an “event” in stream processing. Events 
are a small, self-contained object with details of something that happened, usually 
including a wall clock timestamp.

Transmission of event streams
● “File names” in batch processing are the same as “topics” or “streams” in stream 

processing. (P. 441)
● Events could be encoded in various formats, e.g. strings, JSON, or in binary form. It 

could be appended to a file, stored in a table, or in a NoSQL datastore as a document. 
Events are transmitted over the network to other nodes for processing. Events are 
created by producers and read by consumers/recipients/subscribers. (P. 440). This 
usually happens (more efficiently) by pushing events, rather than pulling them (P. 441).

● This publish/subscribe model has a few interesting challenges (P. 441/442):
○ What if producers send messages faster than the consumer can handle them? 

Drop messages, buffer them in a queue, or apply backpressure. When buffering, 
how to handle an ever-growing queue? Persist messages from memory to disk? 
What about performance?

○ What if a node crashes or goes offline temporarily? Are messages lost (and 
could your application deal with that loss)? Achieving durability (e.g. by 
immediately) writing messages to disk does have a performance penalty.

● This publish/subscribe model can be implemented in various ways:
○ Via direct messaging between producers and consumers (P. 442): e.g. via UDP 

multicast, or via TCP or IP multicast (as done by brokerless libs such as ZeroMQ 
or nanomsg). Also, producers could connect directly to consumers (or vice 
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versa), such as done with webhooks.
■ The main caveat is that for these systems to work, producers and 

consumers need to be constantly online, or they will miss messages. (P. 
443)

○ Via message brokers (P. 443) which run as servers to which consumers connect.
Messages are put on a (usually unbounded) queue, thus consumers no longer 
need to be always online. Some brokers persist messages to disk (so that the 
broker can recover from a crash), some brokers only keep messages in memory.
There are two basic variants of brokers:

■ “Transient” brokers that drop messages once they have been delivered 
(e.g. JMS/AMQP/etc.). Their caveat is that new subscribers will only get 
those messages that have been published since they joined. They are a 
good choice if you need load balancing message distribution (see bullet 
point below), e.g. because processing a single message is expensive, 
and assuming that ordering of messages is not important.

■ Log-based brokers that persist all events to disk - they also allow 
subscribers to process “old” messages published before they connected.

● Distributing events to multiple consumers subscribing to the same topic (P. 444): there 
are two basic approaches:

○ 1. Load balancing: events are evenly distributed to the consumers, e.g. in round-
robin style.

○ 2. Fan out: each event is delivered to every consumer.
● Improving fault tolerance of message/event delivery (P. 445): brokers generally make 

use of acknowledgements and message-redelivery to tolerate crashing consumers. After
a client has taken a message from the broker’s queue, it must explicitly tell the broker 
that it has processed the message successfully (the “acknowledgement”). If this does 
not happen “in time” (using some timeout), the broker will deliver the message again 
(e.g. to other consumers, when using the load balancing approach). This can mean that 
you no longer get messages delivered to consumers in the same order as they were 
published!

● Details about log-based brokers (such as Kafka or Amazon Kinesis streams):
○ They are like a “hybrid” of databases (which let clients discover “old” data that 

was stored in the DB some time in the past, but DB implementations are not 
performant regarding subscriptions/pushing messages), and JMS-style message 
brokers that are transient/forgetting old events, but are efficient in their publish-
delivery mechanism. (P. 447)

○ General idea: producers append messages to the end of a log, consumers read 
all messages until the log ends, and from then on they wait for notifications.

○ Scaling happens via partitioning (as discussed in chapter 6) of some form (the 
book does not give concrete examples), such that a specific topic is broken down
into multiple partitions. In each partition, the broker assigns a monotonically-
increasing counter for each message, a.k.a. Offset.

■ There are no ordering guarantees across different partitions!
○ Fault tolerance is achieved by replicating partitions to different nodes.
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○ Achieving the load balancing message distribution mode (see above) is more 
tricky with log-based brokers, especially when using partitions (P. 448): you 
would usually assign entire partitions to consumers. But this has problems, e.g. a
slow consumer would cause the entire system to slow down, because with this 
approach you don’t let other (faster) consumers deal with the remaining 
messages stored in a partition.

○ Issue with fault tolerance and multiple partitions: it is not enough that a consumer
internally maintains its offset, because when a consumer crashes, the broker 
would not know what to tell a new consumer (who takes over the work of the 
crashed one) regarding the offset from which it should continue. (P. 449) 

○ In practice, log-based brokers cannot really offer unbounded queues, but they 
have to discard very old data once they run out of disk space. In practice, this 
would happen usually because a consumer is too slow or has crashed for too 
long, which is something you can monitor and write alerts for. (P. 450)

Bringing message broker features into (traditional) DBs
● Databases internally also have logs that contain changes, the write-ahead logs and 

replication logs. But they are not exposed via a public API (P. 454).
● Change data capture (CDC) is a topic of increasing interest: it means that you can 

observe all changes written to the DB, in order to apply them to some other system (e.g. 
an external index). Instead of all interested clients using a DB’s “trigger” mechanism, you
can instead have a single producer that is triggered, which then publishes the change 
events via a log-based message broker. (P. 455)

○ There are dedicated 3rd party implementations for traditional DBs like MySQL, 
e.g. Maxwell or Debezium, but also many DB vendors have Apache Kafka 
connectors. (P. 455)

○ There are also some DBs offering such CDC APIs natively (first class support), 
e.g. CouchDB or Firebase (P. 456)

○ Some of these tools also maintain the ability to retrieve a snapshot of a given 
point of time, allowing you to retrieve change events that happened since this 
snapshot has been created. (P. 455)

● A related approach to CDC is Event sourcing (from the Domain-Driven-Design 
community) (P. 457)

○ It applies the idea of capturing change events at a high level of abstraction 
(whereas CDC works at a low-level). What CDC essentially does is that the DB 
works on mutable data, and the DB engine extracts change events at the low 
level. With Event sourcing, the application already works at the event level - it 
creates and stores immutable event objects in the DB. Event sourcing records 
user actions themselves, rather than recording the effects of these actions.

○ Although there are specialized DB engines for event sourcing (e.g. Event Store), 
you can also use conventional DBs or log-based message brokers to build 
applications in this style.

○ However, reading/writing only these events would not work - applications and 
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users still (also) need a current state / snapshot that accumulates all events. 
However, this is done for performance reasons (to get a fast response), not for 
storage reasons - Event sourcing-based applications usually do want to keep all 
events for a very long time, for auditing etc.

■ Note that there is additional complexity due to the fact that the 
state/snapshot view needs to be updated in lock-step (or “in sync”) with 
the events. This could be achieved via distributed transactions (that e.g. 
insert the event into the event store and also make sure that the view is 
updated), or with other tricks (e.g. having views be rebuilt asynchronously
in the background e.g. every 10 minutes, and whenever we render a 
view, we dynamically compute the view, using the (slightly outdated) view
and applying only the events from the event DB of the last 10 minutes.

● Advantages of immutable events (P. 461):
○ Auditability
○ Easier to debug code, because you can replay events
○ Easier to recover from errors (e.g. in a production system)
○ Higher degree of information: e.g. if 2 actions would cancel each other out (in the

snapshot / state), it may still be useful to know about these 2 actions, e.g. for 
analytics

○ Ability to implement additional features with additional (state-based) views, in 
parallel to the production system (not negatively affecting it, e.g. not having to do 
schema migrations). In general, schema design becomes much more flexible, as 
you can always rebuild your DB (with a different schema) from the event logs.

● Disadvantages of immutable events (P. 463):
○ An ever-growing history of events will grow very large. Storage will become 

expensive, and the performance of log compaction and garbage collection may 
become degraded.

○ Sometimes you are required to delete data, e.g. for administrative reasons 
(GDPR etc.)

Processing of event streams
● There are a few options to process events:

○ 1) Write the data contained in the events to a different storage system, e.g. a DB,
a cache, a (search) index, …. from which other clients can query the data.

○ 2) Push event data to users/humans, e.g. via mobile push notifications or via 
email

○ 3) Process one or more input streams to create one or more output streams, 
which in turn are then processed using options 1-3 again. The rest of this 
section focuses on option 3..

● Uses of stream processing (P. 465-468):
○ Complex event processing (CEP): applies pattern-matching to the incoming 

event stream. You use some high-level declarative query language (e.g. SQL) to 
define the pattern. Once such a sequence is matched, the processing engine 
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produces a (complex) output event that contains details of the event pattern that 
was detected. There are a few commercial products available., e.g. IBM 
InfoSphere Streams, or SQLstream.

○ Stream analytics: rather than pattern matching, this usage mode computes 
aggregations and/or statistical metrics over a large number of events. E.g. the 
frequency of events, or a rolling average of a value, etc. Example 
implementations are Apache Storm, Spark Streaming, Flink, or Kafka Streams. 
Note that the boundary between CEP and stream analytics is blurry.

○ Maintaining materialized views: events are applied to a mutable state, e.g. 
caches, data warehouses/DBs, search indices, etc.

○ Searching on streams: can be broken down into “after-the-fact” search (when you
want to search on past events) and “streaming search” (applying a search to 
each (future) event as it is added to the stream). It is possible to optimize the 
search, which is necessary, because it would be computationally expensive to 
brute-force-style apply every query to every document. Instead, you can also 
index the queries themselves. That index is a dictionary mapping from the terms 
(contained in a query) to the corresponding query: Whenever a document/event 
comes in, you turn it into a query that ORs all the terms in that document, and 
then use the query-index to find out which of the many existing queries you 
should actually run against that document. Details are available here. 

● Handling time in stream processing is rather difficult:
○ There are different time stamps: event creation (timestamp created by the 

machine producing the event), event delivery (timestamp created by e.g. the 
broker), time of processing (timestamp from the processor’s local clock). (P. 469)

■ The clocks producing these timestamps are often not synchronized!
○ The time between event creation and event delivery may be rather large, e.g. 

due to network delays, or temporarily being offline. Also, the delivery may be out 
of order.

○ Answering a query such as “give me the rate of HTTP requests to my server 
averaged over the last 5 minutes” is difficult, because the result is constantly “in 
flux”, assuming that not all events of that “last 5 minutes” time window have 
arrived yet. These delayed events are called straggler events. You can e.g. 
handle them by ignoring them, but still tracking a metric of how many you have 
ignored, and alert you if the metric becomes bad. Or you can publish 
“corrections” of the search result. (P. 470)

● Join queries on streams: there are 3 different kinds of joins on streams (P. 473-475):
○ Stream-stream joins: the join operator is given 2 streams and searches for 

related events that occur within a time window (that you define). An example. 
One stream contains “user did a search” events, the other stream is “user clicked
on search result”. The join operator locally maintains state for the events 
occurring within the predefined time window, usually in the form of a search 
index.

■ These 2 input streams might even be the same stream (“self-join”).
○ Stream-table joins: one input is a stream, the other input (“table”) is a 
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materialized view of a database of which the join operator keeps a local copy (for
performance reasons - querying a remote DB on each incoming event would be 
too expensive). The join operator keeps this local copy of the materialized view 
up-to-date by subscribing to the DB’s changelog (see “CDC” above). For each 
incoming event of the stream, the join operator queries the materialized view of 
the local DB copy and outputs an enriched event.

○ Table-table joins: both inputs are materialized-view-tables (as described above).
The join operator creates a 3rd materialized view that is a (SQL-style) JOIN of 
the 2 incoming materialized view tables, producing an output stream of the 
changes to that 3rd materialized-view.

● Handling fault tolerance:
○ The general goal of fault tolerance is that the output should be the same as if 

nothing had gone wrong, even though in fact things have gone wrong. It should 
appear as if every event was processed exactly once. (P. 476)

○ In case of MapReduce-style batch processing (prev. chapter) this is easier to 
solve than for stream processing, because the input was bounded, and you 
would simply retry failed batch jobs (of intermediate stages). In stream 
processing, some tools (such as Spark Streaming) perform “micro-batching”, 
breaking the stream up into smaller blocks, treating each block like a miniature 
batch process. Other solutions, e.g. Apache Flink, periodically generates rolling 
checkpoints of state, writing them to durable storage. If a stream operator 
crashes, it restarts from the most recent snapshot.

12. The future of data systems
● This is a meta-level chapter which reviews the design of distributed systems (particularly

DB-like systems vs. data flow systems), and also goes into cultural/societal aspects.
● Given that systems are often made of several specialized components (DBs, message 

brokers, etc.), the analysis of the data flow is very important. Typically, some external 
actor (a machine or a user) initiates an action (e.g. a button click in your application’s 
web UI), and this event then flows through the different components of our system. (P. 
491)

○ One solution is to use distributed transactions, especially if several things (all) 
need to happen in parallel (e.g. manipulating a DB and writing data to a search 
index). The distributed transaction is needed because no individual component is
“in charge” of keeping consistency, thus, the distributed transaction ensures it. 
The disadvantage is the complexity and lower throughput of distributed 
transactions (assuming you require strong consistency).

○ If you do need strong consistency (in terms of data integrity), but do not require 
an upper bound (regarding timeliness) after which a transaction is definitely 
finished, a better alternative is to use stream-processing systems (see previous 
chapter). You write the events generated by the external actor to a single source 
of truth (e.g. a log-based broker), which provides the total order of all events. 
Other components (e.g. the search index or a DB) subscribe to the log, and do 
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their work. You insert uniquely-generated end-to-end correlation IDs (already 
generated in your application, or at least in the message broker) to make 
operations idempotent. See also P. 523 for details. The advantage of this 
approach is that it can perform much better in terms of throughput and 
operational stability (P. 526)

● When using stream processing, you can also generate, store and process events 
whenever a user or external system reads from your system (that is: events are not just 
for write-operations). The stream processor can then both process read and write 
events, by writing the result to output streams. (P. 514)

○ When both read and write events are processed by the same stream processor, 
you can do a stream-table join (see above) between the stream of read queries 
and the database (that accumulates the write-ops).

○ Having read events improves the ability of user tracking.
○ However, storing the (probably large) volume of read events is costly and 

challenging in terms of handling the high throughput.
● Getting a completely correct application in practice is almost impossible. “Correctness” 

means that you have well-defined and well-understood semantics of the behavior of your
application, even when facing various kinds of faults. However, it is already difficult to 
judge which transaction isolation level is the right one for our application. Things might 
look good during the initial tests, but subtle (hard-to-reproduce) problems still come up 
during operations of the production system. And you cannot even fully trust the claims of
the vendors of DBs (or brokers, etc.), as e.g. the Jepsen DB benchmarks demonstrate, 
which often find flaws in DBs in the presence of network problems or crashes. And even 
if a DB was bug-free, your application code might use it in an incorrect way (doing the 
wrong calls, or configuring it wrong). (P. 515)

● A very common requirement is “exactly once” semantics, which guarantees that events 
are only processed exactly once, which is difficult because information passes through 
different nodes with (possibly) flaky connectivity where you cannot rely on requests or 
responses to be delivered as promised. While an atomic commit protocol can achieve 
this exactly-once requirement, another great way is to make operations idempotent, e.g. 
by using end-to-end operation identifiers. Exemplary, in a web app, you would generate 
a unique ID already in the app’s frontend, and that ID is passed on to all the other 
(distributed) components in your system. For instance, in a relational DB, you could have
a “requests” table with a single “requestID” column whose values must be unique. In 
your transaction, you always first try to insert the request ID (submitted by the client) 
before doing any other table manipulations, thus failing early if the request ID was 
already committed as part of a previous transaction. (P. 518)

● Loosening constraints (P. 526-528): often the constraints of strong consistency are not 
really called for (e.g. having a unique username, or avoiding overbooking of a resource 
such as a hotel room). It is usually easier to allow for inconsistencies to happen and to 
compensate at a later point of time, e.g. by giving a gift or voucher to the end-user for 
their trouble due to a cancellation. This is particularly true in those cases where the 
business must have such “apology-mechanisms” in place anyway. Exemplary, an online 
shop may have miscounted their inventory, having sold you goods it doesn’t even have. 
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Or due to higher power (bad weather) a flight has to be canceled. Thus, if you have such
an apology-mechanism in place already anyway (on the business level), it makes little 
sense to require strong consistency on the technological level.

○ Also, overbooking is an often-used (desirable) trick on the business-level 
anyway, e.g. overbooking hotel rooms because the business knows that there is 
a certain rate of (last-minute) cancellations anyway. If push comes to shove, they
can offer you a room in the hotel next door.

○ Eventually, you still have to validate the consistency of your data (doing a 
delayed conflict resolution), but it can happen much later than the point of the 
event-generation (when the original write-op happened).

○ Having strong constraints in place only reduces the number of apologies you 
have to make, but that also reduces the performance and availability of your 
system, which in turn may increase the number of apologies you have to make 
(for the system outages).

● As discussed above (P. 515), you should expect bugs even in “battle-tested” DBs. A 
good mitigation strategy is to regularly/continuously audit the integrity of your data. (P. 
530). This means to read the data and check that it makes sense. It also means to verify
that backups are consistent, and that you can successfully restore them.

○ Some systems, such as HDFS or S3, have such data auditing integrated - they 
are assuming a certain failure rate of the underlying disks.

○ Doing data integrity auditing does cost some money, but it may save much more 
money which you would otherwise lose in a production incident that takes you a 
long time to fix, because you are having problems with the data restore process. 
Doing auditing continuously also helps you discover (and fix) bugs in your code 
more quickly (e.g. if the bug introduces integrity problems).

● Book closes with a lengthy section about responsibility we as developers have, touching 
on the ethics and rights of the end-users using our system (not summarized here).
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